

ФЕДЕРАЛЬНОЕ АГЕНТСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА ФГБОУ ВО «ГУМРФ имени адмирала С.О. Макарова» **АРКТИЧЕСКИЙ МОРСКОЙ ИНСТИТУТ ИМЕНИ В.И. ВОРОНИНА**

 филиал Федерального государственного бюджетного образовательного учреждения высшего образования «Государственный университет морского и речного флота имени адмирала С.О. Макарова»

КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ ПО ОБЩЕОБРАЗОВАТЕЛЬНОМУ УЧЕБНОМУ ПРЕДМЕТУ

ЭК.01 ОСНОВЫ ЕСТЕСТВЕННО-НАУЧНЫХ ЗНАНИЙ, РАЗДЕЛ ХИМИЯ

ПРОГРАММЫ ПОДГОТОВКИ СПЕЦИАЛИСТОВ СРЕДНЕГО ЗВЕНА по специальности 26.02.03 Судовождение

квалификация Старший техник-судоводитель с правом эксплуатации судовых энергетических установок СОГЛАСОВАНО

Заместитель директора по учебнометодической работе

Mufuober

Л.Б. Чиркова

(20» und

2022 г.

« 23

Р.А. Пицаев

eeace

УТВЕРЖДАЮ

Директором АМИ им. В.И. Воронина филиал ФГБОУ ВО «ГУМРФ имени

адмирала С.О. Макарова»

2022 г.

ОДОБРЕНО

на заседании цикловой комиссии дисциплин общеобразовательного, ОГСЭ и ЕН циклов

Протокол от 16. 05.2022 № 8

Руководитель

А.Г.Чистякова

THE PROPERTY OF THE PARTY OF TH

РАЗРАБОТЧИК:

Манахова Светлана Валерьевна, к.т.н.

Комплект контрольно-оценочных средств по учебному предмету ЭК.01 Основы естественно-научных знаний, раздел Химия разработан в соответствии с Федеральным государственным образовательным стандартом СОО, утвержденным Приказом Министерства образования и науки Российской Федерации от 17.05.2012 № 413 с изменениями и дополнениями, Федеральным государственным образовательным стандартом среднего профессионального образования по специальности 26.02.03 Судовождение, утвержденным приказом Министерства просвещения РФ от 02.12.2020 № 691, рабочей программой учебного предмета.

СОДЕРЖАНИЕ

1. ОБЩИЕ ПОЛОЖЕНИЯ	4
1.1. Паспорт комплекта контрольно-оценочных средств	4
2. РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРЕДМЕТА, ПОДЛЕЖАЩИЕ	5
ПРОВЕРКЕ	3
3. КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ	5
3.1. Задания для проведения текущего контроля	5
3.2. Задания для проведения промежуточной аттестации	77
3.2.1. Задания для проведения дифференцированного зачета	77

1. Общие положения

1.1. Паспорт комплекта контрольно-оценочных средств

Назначение:

Комплект контрольно-оценочных средств предназначен для контроля и оценки предметных результатов освоения общеобразовательной учебной дисциплины ЭК.01_1 Основы естественно-научных знаний, раздел Химия

Объекты оценивания	Показатели оценки
Умение 1 - уметь назвать изученные вещества по тривиальной и	Объяснение названия веществ по тривиальной и международной номенклатуре
международной номенклатуре	
Умение 2 - уметь определять	Объяснение определения валентности,
валентность, степень окисления, тип	степени окисления, типа химической связи,
химической связи в соединениях, заряд	заряда иона, принадлежность веществ к
иона, окислитель и восстановитель,	разным классам органических и
принадлежность веществ к различным классам органических и неорганических веществ	неорганических соединений
Умение 3 - уметь объяснить строение	Объяснение строения Периодической
Периодической системы, общие	системы, общие свойства металлов и
химические свойства металлов и	неметаллов и их соединений
неметаллов	
Умение 4 - уметь объяснить зависимость	Объяснение зависимости свойств веществ от
свойств веществ от их строения и	их строения и состава, природы химической
состава, природы химической связи	связи, зависимости скорости химических
зависимости скорости химических	реакций, и химического равновесия
реакций, химического равновесия	
Умение 5 - уметь выполнять расчетные	Составление простейших и истинных
задачи по химическим формулам и	формул,
уравнениям; проводить: расчеты по	записывание уравнений реакций, объяснение
химическим формулам и уравнениям	алгоритмов решения химических задач
реакций	
Знание 1 - важнейшие химические	Владение основополагающими химическими
понятия, теории и законы химии	понятиями, теориями, законами и
	закономерностями; уверенное пользование
	химической терминологией и символикой
Знание 2 - классификацию и	Сформированность представлений о составе
номенклатуру неорганических и	и химическом строении неорганических и
органических соединений	органических соединений
Знание 3 - роль химии в естествознании,	Сформированность представлений о месте
ее связь с другими естественными	химии в современной научной картине мира;
науками, значение в жизни современного	понимание роли химии в формировании
общества	кругозора и функциональной грамотности
	человека для решения практических задач

2. Результаты освоения учебного предмета, подлежащие проверке

Результатом освоения учебного предмета ЭК.01_1 Основы

естественно-научных знаний, раздел Химия является приобретение обучающимися знаний и умений.

No.	Контролируемые разделы	Код знаний	Наименование
п/п	(темы) учебной дисциплины	и умений	оценочного средства
1	Введение		
2	Раздел 1. Общая и	У 1- У 5	Лабораторные работы №№ 1- 6,
	неорганическая химия	31 - 33	практическая работа № 1,
			самостоятельные работы №№ 1-
			2
3	Раздел 2. Органическая химия	У 1- У 5	Лабораторные работы №№ 7- 11,
	_	31 - 33	практическая работа № 2,
			самостоятельные работы №№ 1-
			2

3. КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ

Контроль качества освоения учебного предмета включает текущий контроль и промежуточную аттестацию.

Видами текущего контроля являются:

- комбинированные тестовые задания (с выбором правильного ответа и со свободным ответом);
- тестовые задания (с одним или несколькими правильными ответами);
- задания на установление соответствия, сравнение, анализ;
- расчётные задачи;
- задание для практических занятий;
- комбинированные итоговые работы (часть А, часть Б и часть С);

Формой промежуточной аттестации по элективному курсу является дифференцированный зачёт.

3.1. Задания для проведения текущего контроля

3.1.1. Практические занятия

Практические занятия направлены на экспериментальное подтверждение теоретических положений и формирование учебных практических умений, они составляют важную часть теоретической и практической подготовки.

Основная цель практических занятий — формирование у обучающихся умений, связанных с использованием полученных знаний, повышение образовательного уровня, расширение кругозора и совершенствование практических навыков; выработка умений безопасного обращения с важнейшими веществами в повседневной жизни.

Особая важность и значимость практических занятий с выполнением химического эксперимента состоит в том, что «в процессе обучения химии

необходимо раскрывать связь между химическими знаниями и повседневной жизнью человека, проблемами, возникающими перед ним в разных бытовых ситуациях».

Одной из эффективных форм химического эксперимента в качестве важнейшего научного метода исследованиями признан практикум, поскольку именно в нем сочетаются возможности обобщения, систематизации, повторения, углубления материала на самостоятельном экспериментальном уровне. Это позволяет преодолеть теоретическую разобщенность пройденных разделов неорганической и органической химии.

При выполнении химического эксперимента на практических занятиях обучающийся должен оформить в тетради отчет, сделать выводы по каждому опыту и по всей работе в целом. Отчет может содержать наблюдения в ходе эксперимента, уравнения реакций, выводы, расчеты. Правильно выполненный отчет свидетельствует об усвоении теоретического материала по данной теме.

При выполнении химического эксперимента, обучающиеся пользуются печатными инструкционными картами, в которых указан порядок проведения работ.

Инструкционные карты содержат:

- 1. Наименование работы.
- 2. Сформированную цель работы.
- 3. Перечень оборудования и реактивов, необходимых для ее проведения.
- 4. Вопросы, поставленные в таком порядке, чтобы курсант понимал сущность работы.
- 5. Описание хода работы с соответствующими рисунками, схемами, таблицами для записи результатов химических реакций.
 - 6. Указания о пользовании приборами и реактивами.
- 7. Контрольные вопросы для углубления теоретических знаний на основании проделанной работы.
 - 8. Указания, каким методом проводить оценку полученного результата.
- С инструкционной картой обучающихся знакомятся в кабинете под руководством преподавателя.

Общие правила работы и меры безопасности в химической лаборатории (кабинете).

- Рабочее место во время работы и после ее окончания необходимо содержать в чистоте и порядке
- При выполнении химического эксперимента необходимо соблюдать осторожность, быть внимательным.

- Все операции проводить над столом, соблюдая технику безопасности.
- Обучающиеся должны знать основные свойства реактивов, особенно степень их вредности.
- Категорически ЗАПРЕЩАЕТСЯ пробовать химические вещества и реактивы на вкус, принимать пищу за лабораторным столом.
- Все работы с ядовитыми и газообразными веществами необходимо проводить под тягой.
- При работе с концентрированными кислотами и щелочами следует помнить, что, попадая на кожу человека, они вызывают тяжелые ожоги.
- При нагревании жидкостей с осадком надо быть осторожным, т.к. жидкость может выплеснуться из сосуда на руки и лицо. Пробирки с жидкостью при нагревании следует держать наклонно под углом 45 градусов, отверстием в сторону от себя и рядом сидящих.
- При несчастных случаях, вызванных термическими ожогами (огнем, паром, горячими предметами), для оказания первой помощи необходимо кожу смочить 96% этиловым спиртом или 1–5% раствором перманганата калия.
- При химических ожогах кожи концентрированными кислотами пораженные места следует обильно промыть водой, затем обработать 2-3 % раствором питьевой соды.
- В случае химических ожогов концентрированными щелочами обожженное место надо промыть водой, затем обработать 2-5% раствором борной или уксусной кислоты.
- При попадании жидкости в глаза необходимо промыть их большим количеством воды в течение 10-30 минут, затем, в случае ожога кислотой 2-3% раствором питьевой соды, а при ожоге щелочью 2% раствором борной кислоты.
- В случае химических ожогов полости рта кислотами (или щелочами) следует прополоскать рот слабым раствором питьевой соды (или борной кислоты).

Правила выполнения химического эксперимента на практических занятиях.

- 1. Выполнение химического эксперимента производится индивидуально в часы, предусмотренные расписанием занятий в соответствии с методическими указаниями.
- 2. Подготовка к практическим занятиям заключается в проработке теоретического материала, относящегося к данной теме по рекомендованной

литературе, предусмотренной рабочей программой, или по конспекту лекции.

- 3. Перед проведением химического эксперимента преподаватель знакомит обучающихся/или напоминает о технике безопасности при работе с химическими реактивами, способах оказании помощи в случае попадания реактива на кожу или одежду.
- 4. При проведении химического эксперимента курсанты используют инструкционную карту, в соответствии с которой они готовят план выполнения химического эксперимента и таблицы для записи.
- 5. Обучающиеся составляют отчёт, заносят все результаты наблюдений немедленно после их получения в таблицу, записывают уравнения реакций, формируют выводы, производят все вычисления в тетради, отвечают на контрольные вопросы, проводят анализ качества работы.
- 6. При выполнении химического эксперимента обучающиеся соблюдают правила техники безопасности, а по окончании работы приводят в порядок рабочее место.

Анализ отчетов выполненных работ по химическому эксперименту

При проверке отчётов по проведённому химическому эксперименту учитываются следующие умения:

- 1. Планировать проведения опыта.
- 2. Собирать прибор по схеме.
- 3. Пользоваться химическими реактивами.
- 4. Знать технику безопасности.
- 5. Проводить наблюдения.
- 6. Правильно оформлять таблицу в тетради.
- 7. Правильно записывать уравнения химических реакций, уметь уравнивать их.
 - 8. Уметь оценивать и делать вычисления.
 - 9. Составлять краткий отчёт и делать выводы по проделанной работе.
- 10. Проводить анализ качества работы способом, указанным в инструкционной карте.

Методические указания к практическим занятиям для обучающихся. Правила составления отчета.

Выполненная работа должна быть представлена в виде отчета по заданной форме.

Отчет по работе каждый обучающийся выполняет индивидуально с учетом рекомендаций по оформлению.

Отчет выполняется в отдельной тетради, сдается преподавателю по окончанию занятия.

Защита проводится путем индивидуальной беседы или выполнения зачетного задания.

Работа считается выполненной, если она соответствует критериям, указанным в пояснительной записке:

- правильно и аккуратно оформлено;
- таблицы, схемы, рисунки выполнены карандашом и линейкой;
- обучающийся показал качественные знания и умения, т.е. правильно составляет формулы веществ, пишет уравнения реакций, умеет их уравнивать, составлять электронный баланс и ионное уравнение реакций;
- умеет формулировать выводы по каждому опыту и по работе в целом;
- умеет определять вещества с помощью качественных реакций и индикаторов;
- эксперимент осуществляет по плану с учетом техники безопасности и правил работы с веществами и оборудованием;
- поддерживается чистота рабочего места и порядок на столе, экономно расходуются реактивы;
- правильно оформлено решение задачи, нет ошибок в логическом рассуждении и решении, задача решена рациональным способом, нет ошибок в расчетах.

Рабочее место обучающегося.

Каждое рабочее место должно иметь оборудование для проведения всех предусмотренных программой практических занятий. К такому оборудованию надо отнести: штатив с пробирками; штатив с кольцом и зажимом; спиртовку; фарфоровую чашку; воронку; колбочку на 150-200 мл; стакан; стакан для сливания отработанных реактивов; чашку для сбора сухого мусора; мерные цилиндры; держатели для пробирок; наборы с реактивами и индикаторами.

Оборудование для проведения отдельных опытов выставляют на столы по мере необходимости на подносах.

Критерии оценок

Основные требования к знаниям и умениям обучающихся по химии

1. Требование к усвоению теоретического учебного материала.

Знать сущность основных химических теорий и законов. Уметь составлять уравнения реакций и разъяснять их смысл. Уметь раскрывать на примерах взаимосвязь теории и практики.

2. Требования к усвоению фактов.

Уметь на основе изученных теорий и законов устанавливать причинноследственные связи между строением, свойствами, применением веществ; делать выводы и обобщения.

3. Требования к усвоению химического языка.

Уметь составлять химические формулы веществ в молекулярном и структурном видах, называть вещества в соответствии с номенклатурой, составлять полные и сокращенные ионные уравнения изученных реакций.

4. Требования к выполнению химического эксперимента.

Знать устройство простейших приборов для получения и собирания газов и уметь ими пользоваться; уметь выполнять качественные реакции на важнейшие ионы для определения состава веществ.

5. Требования к решению расчетных задач.

Уметь вычислять: массу, объем или количество вещества по известным данным об исходных веществах, одно из которых дано в избытке; массовую долю выхода продукта от теоретически возможного; массу или объем продукта реакции по известной массе или объему одного из исходных Уметь веществ, содержащего примеси. проводить расчеты ПО термохимическим уравнениям. Решать задачи на вывод формулы органических веществ.

Рекомендации к проверке и оцениванию знаний и умений обучающихся

Результаты обучения по дисциплине ЭК.01_1 Основы естественнонаучных знаний, раздел Химия должны соответствовать общим задачам и требованиям к усвоению дисциплины.

Результаты обучения оцениваются по пятибалльной системе. При оценке учитываются следующие качественные показатели ответов:

- глубина (соответствие изученным теоретическим обобщениям);
- осознанность (соответствие требуемым в программе умениям применять полученную информацию);
- полнота (соответствие объему программы и информации учебника).

При оценке учитываются число и характер ошибок как существенных, так и несущественных.

Существенные ошибки связаны с недостаточной глубиной и осознанностью ответа. Например, обучающий неправильно указал основные

признаки понятий, явлений, характерные свойства веществ; неправильно сформулировал закон или правило; не смог применить теоретические знания для объяснения и предсказания явлений, установления причинно-следственных связей, сравнения и классификации явлений.

Несущественные ошибки определяются неполнотой ответа. Например, упущение из виду какого-либо нехарактерного факта при описании вещества, процесса. К ним также можно отнести оговорки, описки, допущенные по невнимательности.

Результаты обучения проверяются в процессе устных и письменных ответов обучающихся, а также при выполнении химического эксперимента.

Общие критерии оценки предмета:

Отметка «отлично»: если обучающийся свободно, без ошибок справляется с выполнением задания.

Отметка «хорошо»: если обучающийся не допускает существенных неточностей при ответах, владеет необходимыми навыками выполнения заданий.

Отметка «удовлетворительно»: если обучающийся допускает неточности и испытывает затруднения при выполнении заданий.

Отметка «неудовлетворительно»: если обучающийся допускает существенные ошибки, с большими затруднениями выполняет задания.

Критерии оценки при выполнении конкретных заданий

Оценка устного ответа.

Отметка «отлично»: ответ полный и правильный на основании изученных теорий; материал изложен в определенной логической последовательности, литературным языком; ответ самостоятельный.

Отметка «хорошо»: ответ полный и правильный на основании изученных теорий; - материал изложен в определенной логической последовательности, при этом допущены две-три несущественные ошибки, исправленные по требованию преподавателя.

Отметка «удовлетворительно»: ответ полный, при этом допущена существенная ошибка, или ответ неполный, несвязный.

Отметка «неудовлетворительно»: при ответе обнаружено непонимание обучающимися основного содержания учебного материала или допущены существенные ошибки, которые обучающийся не может исправить при наводящих вопросах преподавателя.

Оценка экспериментальных умений.

Оценка ставится на основании наблюдения за обучающимися в процессе работы и проверки письменного отчета.

Отметка «отлично»: работа выполнена полностью, правильно; сделаны правильные наблюдения и выводы; эксперимент осуществлен по плану, с учетом техники безопасности и правил работы с веществами и оборудованием; проявлены организационно-трудовые умения (поддерживается чистота рабочего места и порядок на столе, экономно используются реактивы).

Отметка «хорошо»: работа выполнена правильно, сделаны правильные наблюдения и выводы, при этом эксперимент проведен не полностью или допущены несущественные ошибки в работе с веществами и оборудованием.

Отметка «удовлетворительно»: работа выполнена правильно не менее чем наполовину или допущена существенная ошибка в ходе эксперимента, в объяснении, в оформлении работы, в соблюдении правил техники безопасности при работе с веществами и оборудованием, которая исправляется по требованию преподавателя.

Отметка «неудовлетворительно»: допущены две и более существенные ошибки в ходе эксперимента, в объяснении, в оформлении работы, в соблюдении правил техники безопасности, при работе с веществами и оборудованием, которые обучающийся не может исправить даже по требованию преподавателя.

Оценка умений решать экспериментальные задачи.

Отметка «отлично»: план решения составлен правильно; правильно осуществлен подбор химических реактивов и оборудования; дано полное объяснение и сделаны выводы.

Отметка «хорошо»: план решения составлен правильно; правильно осуществлен подбор химических реактивов и оборудования, при этом допущено не более двух несущественных ошибок в объяснении и выводах.

Отметка «удовлетворительно»: план решения составлен правильно; - правильно осуществлен подбор химических реактивов и оборудования, но допущена существенная ошибка в объяснении и выводах.

Отметка «**неудовлетворительно**»: допущены две (и более) ошибки в плане решения, в подборе химических реактивов и оборудования, в объяснении и выводах.

Оценка умения решать расчетные задачи.

Отметка «отлично»: в логическом рассуждений и решении нет существенных ошибок, задача решена рациональным способом.

Отметка «хорошо»: в логическом рассуждений и решении нет ошибок, но задача решена нерациональным способом, или допущено не более двух несущественных ошибок.

Отметка «удовлетворительно»: в логическом рассуждении нет существенных ошибок, но допущена существенная ошибка в математических расчетах.

Отметка «неудовлетворительно»: имеются существенные ошибки в логическом рассуждений и решении.

Оценка письменных контрольных работ.

Отметка «отлично»: ответ полный и правильный, на основе изученных теорий, при этом возможна несущественная ошибка.

Отметка «хорошо»: ответ неполный или допущено не более двух несущественных ошибок.

Отметка «удовлетворительно»: ответ дан не менее чем наполовину, допущена одна существенная ошибка и при этом две-три несущественные.

Отметка «неудовлетворительно»: ответ дан менее чем на половину или содержит более двух существенных ошибок.

При оценке выполнения письменной контрольной работы необходимо учитывать требования единого орфографического режима.

Критерии оценивания тестовых заданий

Оценка	Кол-во правильных ответов	Кол-во правильных ответов	
	в (%)	в баллах	
отлично	91-100	10	
хорошо	75-90	8-9	
удовлетворительно	60-74	6-7	
неудовлетворительно	0-60	0-4	

Практическое занятие №1

Тема: Решение задач на основные законы химии, на вывод формулы вещества, определение массовой доли химического элемента в веществе, задачи по уравнению реакции.

Время выполнения – 90 минут

Цель:

- 1) Научиться решать задачи на определение абсолютной массы молекулы и атома.
- 2) Научиться выполнять расчеты количества вещества, массовой доли химического элемента в веществе.
- 3) Научиться решать задачи по уравнению реакции.

Теоретическая часть

- 1. *Атом* наименьшая частица химического элемента, сохраняющая все его химические свойства
- 2. Молекула наименьшая частица вещества, обладающая его химическими свойствам.

3. Международная единица атомных масс равна <math>1/12 массы изотопа 12 С - основного изотопа природного углерода.

1 a.e.
$$M = 1/12 \cdot m (^{12}C) = 1,66057 \cdot 10^{-27} \text{ K}$$

- 4. Относительная атомная масса (Ar) безразмерная величина, равная отношению средней массы атома элемента (с учетом процентного содержания изотопов в природе) к 1/12 массы атома 12 С.
- 5. Средняя абсолютная масса атома (т) равна относительной атомной массе, умноженной на а.е.м. Ar(Mg) = 24,312

$$m(Mg) = 24{,}312 \cdot 1{,}66057 \cdot 10^{-24} = 4{,}037 \cdot 10^{-23} \Gamma$$

6. Относительная молекулярная масса (Mr) - безразмерная величина, показывающая, во сколько раз масса молекулы данного вещества больше 1/12 массы атома углерода 12 С.

$$M_{\Gamma} = m_{\Gamma} / (1/12 \text{ ma}(^{12}\text{C}))$$

mr - масса молекулы данного вещества;

ma(12C) - масса атома углерода ^{12}C .

- Мг относительная молекулярная масса вещества равна сумме относительных атомных масс всех элементов с учетом индексов.
- 7. Абсолютная масса молекулы равна относительной молекулярной массе, умноженной на а.е.м.
- 8. Число атомов и молекул в обычных образцах веществ очень велико, поэтому при характеристике количества вещества используют специальную единицу измерения моль.

Количество вещества, моль. Означает определенное число структурных элементов (молекул, атомов, ионов).

Обозначается п, измеряется в моль.

Моль - количество вещества, содержащее столько же частиц, сколько содержится атомов в 12 г углерода.

- 9. Молярная масса (М) показывает массу одного моля вещества. Выражается в граммах на моль г/моль. Молярная масса вещества равна отношению массы вещества к соответствующему количеству вещества и численно равна его относительной молекулярной массе, однако первая величина имеет размерность г/моль, а вторая безразмерная.
- 10. Число Авогадро ди Кваренья (NA). Количество частиц в 1 моль любого вещества одно и то же и равно $6{,}02 \cdot 10^{23}$. (Постоянная Авогадро имеет размерность моль⁻¹).
- 11. Вычислить количество вещества, зная массу, объём или число структурных единиц можно по формулам:

$$n=m/M$$
 $n=N/N_A$ $n=V/Vm$

где n – количества вещества, моль

т – масса вещества, г

М - молярная масса вещества, г/моль

 $N\,$ - число структурных единиц (молекул, атомов, ионов и т.п.)

 N_A - число Авагадро, $N_A = 6.02 \cdot 10^{23}$ ед/моль

V – объём газообразного вещества при н.у., л

Vm – молярный объём газообразного вещества при н.у. Vm = 22,4 л/моль

12. Закон Авагадро. В равных объемах различных газов при одинаковых условиях (температура, давление и т.д.) содержится одинаковое число молекул. (Закон справедлив только для газообразных веществ.)

Следствия.

- 1. Одно и то же число молекул различных газов при одинаковых условиях занимает одинаковые объемы.
- 2. При нормальных условиях (0°C = 273°K , 1 атм = 101,3 кПа) 1 моль любого газа занимает объем 22,4 л.
- 13. Исходя из следствия 1 можно определить плотность одного газа относительно другого.

Отношение масс двух газов, занимающих равные объёмы при одинаковых условиях, называют относительной плотностью одного газа по другому и обозначают буквой D.

$$D=M_1/M_2$$
.

Например, плотность газа по водороду

$$D_{H_2}=M_{2a3a}/M_{H_2}=M_{2a3a}/2$$

- 14. Закон постоянства состава. Состав соединений молекулярной структуры является постоянным независимо от способа получения. Состав соединений с немолекулярной структурой (атомной, ионной и металлической кристаллической решеткой) не является постоянным и зависит от способа получения.
- 15. Закон сохранения массы веществ. Масса веществ, вступивших в реакцию, равна массе образующихся продуктов.

Порядок выполнения работы

Решить задания в соответствии со своим вариантом, записать формулы, необходимые для расчетов, подтвердить все выводы подробными расчётами. Критерии оценивания: за правильный ответ ставится 1 балл; за неправильный ответ – 0 баллов.

Оценка	Кол-во правильных ответов	Кол-во правильных ответов	
	в (%)	в баллах	
отлично	91-100	10	
хорошо	75-90	8-9	
удовлетворительно	60-74	6-7	

Варианты заданий:

Вариант №1

- 1. Рассчитайте массу (в граммах) одного атома алюминия.
- 2. Вычислите количество вещества CaCO₃, которое содержится в 450 г карбоната кальция.
- 3. Определите число молекул, которые содержатся в 2,8 л (н.у.) азота.
- 4. Рассчитайте среднюю молярную массу газовой смеси, содержащей при н.у. 10 л CO и 15 л CO₂.
- 5. Относительная плотность неизвестного газа по водороду равна 17,0. Рассчитайте молярную массу этого газа.
- 6. Рассчитайте массовую долю серы (в %) в тиосульфате натрия. Химическая формула тиосульфата натрия - $Na_2S_2O_3$.
- 7. Соединение азота с водородом содержит 87,50 мас.% азота и 12,50 мас.% водорода. Молярная масса этого вещества 32 г/моль. Определить истинную молекулярную формулу данного вещества.
- 8. Рассчитайте массу 812 мл сероводорода при температуре 0° С и давлении 101325 Па.
- 9. Какой объем водорода выделится (условия нормальные), если в избытке раствора серной кислоты растворить 1,28 г цинка?
- 10. Сколько гидроксида натрия (в граммах) необходимо, чтобы при его взаимодействии с сульфатом железа (II) получилось 10г осадка.

Уравнение реакции: $2NaOH + FeSO_4 = Fe(OH)_2 \downarrow + Na_2SO_4$.

Вариант №2

- 1. Рассчитайте массу (в граммах) 100 молекул угарного газа (СО).
- 2. Определите какое количество вещества кислорода содержится в 350 л О2 (н.у.).
- 3. Определите число молекул, которые содержатся в 1 г азотной кислоты HNO3.
- 4. Рассчитайте среднюю молярную массу газовой смеси, содержащей при н.у. 15 л O2 и 5 л NO2.
- 5. Относительная плотность неизвестного газа по воздуху равна 1,44. Рассчитайте молярную массу этого газа.
- 6. Рассчитайте массовую долю кислорода (в %) в ортофосфате калия. Химическая формула ортофосфата калия КЗРО4.

- 7. Соединение серы с водородом содержит 5,88 мас.% водорода и 94,12 мас.% серы. Молярная масса этого вещества 34 г/моль. Определить истинную молекулярную формулу данного вещества.
- 8. Рассчитайте массу 100 мл аммиака при температуре 0оС и давлении 101325 Па.
- 9. Какой объем водорода выделится (условия нормальные), если в избытке раствора соляной кислоты растворить 4 г магния?
- 10. Сколько карбоната кальция (в граммах) необходимо, чтобы при его взаимодействии с соляной кислотой получилось 2,2г газа.

Уравнение реакции: CaCO3 + 2HC1 = CaC12 + H2O + CO2↑.

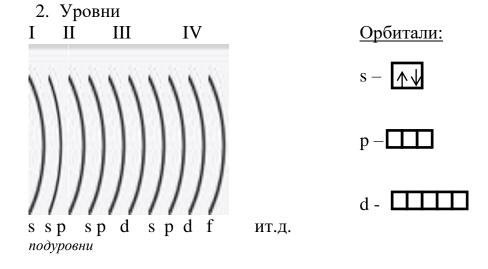
Практическое занятие №2

Тема: Составление электронных формул и графических схем атомов элементов.

Время выполнения - 90 минут.

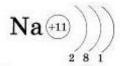
Цель:

- 1) На основе междисциплинарных связей с физикой указать: что характеризует каждый из четырех квантовых чисел в атоме. Рассмотреть основные закономерности заполнения электронами атомных орбиталей.
- 2) Научится записывать электронные и электронно-графические формулы атомов химических элементов определять их семейства:s,p,d,f.


Теоретическая часть

1. Квантовые числа: главное

побочное (орбитальное)


магнитное

спиновое

3. Схема строения атома Na

Электронная формула: $1 s^2 2s^2 2p^6 3s^1$

Семейство: S - (т.к. последним заполняется s-подуровень)

- 3. Высший оксид: Na_2O основной (R_2O -Ігруппа, главная подгруппа)
- 4. Взаимодействует с водой, кислотными оксидами и кислотами. (Подтвердить уравнением реакций).

Порядок выполнения работы

Решить задания в соответствии со своим вариантом, дать полный ответ на теоретический вопрос, записать электронные или электронно-графические формулы атомов в соответствии с заданием.

Критерии оценивания: за правильный ответ в вопросах ставится 1 балл; за неправильный ответ -0 баллов.

Оценка	Кол-во правильных ответов	Кол-во правильных ответов	
	в (%)	в баллах	
отлично	91-100	10	
хорошо	75-90	8-9	
удовлетворительно	60-74	6-7	
неудовлетворительно	0-59	менее 6	

Варианты заданий:

Вариант №1

1. Какое квантовое число характеризует размер орбитали?

- 2. На шестом энергетическом уровне имеется шесть подуровней. Шестой подуровень h. Какое максимальное число электронов может находиться на h–подуровне?
- 3. Схематически изобразите, как на р-подуровне будут распределяться четыре электрона.
- 4. Сколько максимально может находиться электронов на f-подуровне.
- 5. Дайте характеристику элементу с порядковым номером 32 по положению в Периодической системе Д.И.Менделеева.
- 6. Напишите электронную формулу атома элемента №32, укажите к какому электронному семейству относится (s-, p- или d-).
- 7. Составьте электронно-графическую формулу атома элементов №32. Укажите валентные электроны.
- 8. Атом элемента имеет следующее строение электронной оболочки: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^5$. Назовите этот химический элемент.
- 9. Напишите формулу водородного соединения этого элемента из задания №8.
- 10. С какими из ниже перечисленных веществ это водородное соединения элемента из задания №8 может взаимодействовать: NaOH, H_2O , NH_3 . Напишите уравнения соответствующих реакций.

- 1. Какое квантовое число характеризует размер орбитали?
- 2. На пятом энергетическом уровне имеется пять подуровней. Пятый подуровень q. Какое максимальное число электронов может находится на q-подуровне?
- 3. Схематически изобразите, как на d-подуровне будут распределяться 8 электронов.
- 4. Что характеризует спиновое квантовое число и какие значения для него возможны?
- 5. Дайте характеристику элементу с порядковым номером 15 по положению в Периодической системе Д.И.Менделеева.
- 6. Напишите электронную формулу атома элемента №15, укажите к какому электронному семейству относится (s-, p- или d-).
- 7. Составьте электронно-графическую формулу атома элементов №15. Укажите валентные электроны.
- 8. Атом элемента имеет следующее строение электронной оболочки: $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^6$ $4s^2$ $3d^{10}$ $4p^65s^2$. Назовите этот химический элемент.
- 9. Напишите формулу гидроксида элемента из задания №8.

10. С какими из ниже перечисленных веществ гидроксид элемента из задания №8 может взаимодействовать: $Ca(OH)_2$, $CuSO_4$, O_2 , CO_2 . Напишите уравнения соответствующих реакций.

Тестовые задания

Критерии оценивания тестовых заданий

Задание	Баллы
1	1
2	1
3	2
4	1
5	2
6	1
7	1

Оценка	Кол-во правильных ответов	Кол-во правильных ответов	
	в (%)	в баллах	
отлично	91-100	10	
хорошо	75-90	8-9	
удовлетворительно	60-74	6-7	
неудовлетворительно	0-59	менее 6	

- 1. Какая из электронных формул, представленных ниже, отражает порядок заполнения электронами энергетических уровней в атоме ванадия
- a) $1s^2 2s^2 2p^6 4s^2$,
- 6) $1s^22s^22p^63s^23p^63d^24s^2$
- в) $1s^22s^22p^63s^23p^64s^23d^34s^2$
- Γ) $1s^22s^22p^63s^23p^64s^23d^2$
- д) 1s²2s²2p⁶3s²3p⁶4s²3d⁵
- 2. Какими из электронных формул, приведенных в задание1, отражает структуру энергетических уровней в атоме марганца?
- 3.Выберите знаки этих химических элементов, которые относятся к d-элементам:
- а) Se, б) Rb, в) Se, г)Pb, д) Ag
- 4. Из приведенных ниже электронных формул выберите, те которые соответствуют химическим элементам главной подгруппы IV группы.
- a) $4s^24p^64d^35s^2$
- 6) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^3$
- в) $4s^24p^2$
- г) 1s²2s²2p⁶3s²3p⁶3d³4s²

- 5. Из приведенных ниже электронных формул выберите те, которые соответствуют d- элементам IV периода:
- a) $3s^2 3p^6 3d^5 4s^2$
- 6) $1s^22s^22p^63s^23p^64s^23d^{10}4p^2$
- в) $1s^22s^22p^63s^23p^64s^23d^8$
- Γ) $3s^23p^64s^1$
- $д) 4s^2 4p^6$
- 6. Из приведенных ниже электронных формул выберите те, которые соответствуют химическим элементам образующим высший оксид состава Θ_2 :
- a) $3s^1$
- 6) $3s^23p^63d^54s^2$
- в) $1s^22s^22p^6$
- Γ) $2s^2 2p^6$
- $_{\rm J}$) $4s^24p^2$
- 7. Электронная формула внешнего электронного слоя атома химического элемента ... $3s^23p^4$. Из предложенных ниже формул гидроксидов выберите ту, в которой химический элемент проявляет высшую степень окисления:
- а) Э(ОН)₂, б) Н₂ЭО₃, в) Э(ОН)₆, г) НЭО₃, д) Н₂ЭО₄.

- 1. Какая из электронных формул, представленных ниже, отражает порядок заполнения электронами энергетических уровней в атоме марганца
- a) $1s^2 2s^2 2p^6 4s^2$,
- б) $1s^22s^22p^63s^23p^64s^23d^{10}4p^2$
- B) $1s^22s^22p^63s^23p^64s^23d^3$
- Γ) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^2$
- $д) 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^5$
- 2. Какими из электронных формул, приведенных в задание1, отражает структуру энергетических уровней в атоме германия.
- 3.Выберите знаки этих химических элементов, которые относятся к s элементам:
- a) Se, б) Rb, в) Sr, г)Pb, д) Ag
- 4. Из приведенных ниже электронных формул выберите те, которые соответствуют химическим элементам главной подгруппы IV группы.
- a) $3s^2 3p^2$
- 6) $1s^22s^22p^63s^23p^63d^{10}4s^24p^3$
- B) $2s^22p^63s^23p^64s^23d^{10}4p^2$
- Γ) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2$
- $д)2s^22p^3$

- 5. Из приведенных ниже электронных формул выберите те, которые соответствуют p- элементам IV периода:
- a) $3s^23p^63d^54s^2$
- б) $1s^22s^22p^63s^23p^64s^23d^{10}4p^3$
- в) $1s^22s^22p^63s^23p^64s^23d^8$
- Γ) $3s^2 3p^6 4s^1$
- $д) 4s^2 4p^6$
- 6. Из приведенных ниже электронных формул выберите те, которые соответствуют химическим элементам образующим высший оксид состава 9_2O_5
- a) $3s^1$
- б) $3s^23p^64s^23d^{10}4p^3$
- в) $1s^22s^22p^6$
- Γ) $2s^2 2p^5$
- $_{\rm J}$) $4s^24p^4$
- 7. Электронная формула внешнего электронного слоя атома химического элемента ... $2s^22p^3$. Из предложенных ниже формул гидроксидов выберите ту, в которой химический элемент проявляет высшую степень окисления:
- а) $\Im(OH)_2$, б) $H_2\Im O_3$, в) $\Im(OH)_6$, г) $H\Im O_3$, д) $H_2\Im O_4$.

Практическое задание №3.

Тема: Решение задач на растворы, массовую долю растворенного вещества и примеси. Приготовление раствора заданной концентрации.

Время выполнения - 90 минут

Цель:

- 1. Уметь производить расчеты по химическим формулам и уравнениям.
- 2. Научится готовить растворы заданной концентрацией.

Теоретическая часть

Концентрацией растворов называется масса или количество растворенного вещества, содержащееся в определенном объеме или массе раствора (растворителя).

Существует несколько способов выражения концентрации растворов.

Массовая доля растворенного вещества \omega(X) — это отношение массы растворенного вещества m(X) к общей массе раствора m(p-pa).

$$\omega(X) = \frac{m(X)}{m(p-pa)}$$
 (в долях единицы)

или
$$\omega(X) = \frac{m(X)}{m(p-pa)} \cdot 100\%$$
 (в процентах)

Массовая доля вещества, выраженная в процентах, показывает, сколько граммов растворенного вещества содержится в 100 г раствора. Например, если в 100 г раствора содержится 1 г NaCl, то массовая доля ω (NaCl) = 0,01 (или 1%). Такой раствор называется однопроцентным.

Масса раствора равна сумме масс растворенного вещества (X) и растворителя (воды):

$$m(p-pa) = m(X) + m(H_2O)$$
, тогда:
 $\omega(X) = \frac{m(X)}{m(X) + m(H_2O)}$

Массу раствора можно выразить через его объем V(p-pa) и плотность $\rho(p-pa)$:

$$m(p-pa)=V(p-pa)\cdot \rho(p-pa), \quad mor\partial a \quad \omega(X)=\frac{m(X)}{V(p-pa)\cdot \rho(p-pa)}$$

Молярная концентрация растворенного вещества C(X) – отношение количества растворенного вещества n(X) к объему раствора:

$$C(X) = \frac{n(X)}{V(p-pa)}$$

Так как количество растворенного вещества равно отношению:

$$n(X) = \frac{m(X)}{M(X)},$$

то молярная концентрация равна:

$$C(X) = \frac{m(X)}{M(X) \cdot V(p - pa)},$$

где M(X) – молярная масса растворенного вещества X, г/моль.

Единица измерения молярной концентрации – моль/л. Молярную концентрацию обозначают также буквой М, которую ставят после числа.

Например, для раствора с концентрацией азотной кислоты 0,1 моль/л допускаются следующие формы записи:

 $C(HNO_3) = 0,1$ моль/л

 $C(HNO_3) = 0.1M$

 $0.1M \text{ HNO}_3$

0,1M раствор HNO₃.

Если в 1 л раствора содержится 1 моль растворенного вещества, то такой раствор называют одномолярным и обозначают 1M.

Аналогично записи 0,1М, 0,01М, и 0,001М означают деци-, санти- и миллимолярный растворы.

Титр раствора T(X) - показывает массу растворенного вещества в 1 мл раствора:

$$T(X) = \frac{m(X)}{V(p-pa)}$$

Единица измерения титра раствора — $\Gamma/мл$.

Связь между титром раствора, молярной концентрацией и массовой долей выражается формулами:

$$C(X) = \frac{T(X) \cdot 1000}{M(X)}$$

$$T(X) = \omega(X) \cdot \rho(p-pa)$$

Примеры решения задач

Пример 1. Сколько граммов кристаллического гидроксида калия, и какой объем воды необходимо взять для приготовления 300 мл раствора щелочи с массовой долей $\omega(\text{KOH}) = 40\%$. Плотность данного раствора 1409 кг/м³ (1,409 г/мл).

<u>Решение:</u> Массовая доля растворенного вещества — это отношение массы растворенного вещества к массе раствора:

$$\omega(\text{KOH}) = \frac{m(\text{KOH})}{m(\text{p}-\text{pa})}$$

Масса раствора равна произведению плотности раствора на его объем:

$$m(p-pa) = \rho \cdot V = 1,409 \cdot 300 = 422,7 \Gamma.$$

Зная массовую долю гидроксида калия в растворе, найдем его массу (навеску):

$$m(KOH) = \omega(KOH) \cdot m(p - pa) = 0.4 \cdot 422.7 = 169 \Gamma.$$

Массу воды находим как разность между массами раствора и растворенного вещества:

$$m(H_2O) = 422,7 - 169 = 253,7 \Gamma.$$

Принимаем плотность воды $\rho(H_2O)=1$ г/мл, тогда объем воды будет равен 253,7 мл.

Таким образом, для приготовления данного раствора необходимо 169 г кристаллического КОН и 253,7 мл воды.

Пример 2. Рассчитайте массу сульфата натрия Na_2SO_4 , необходимую для приготовления 500 мл 0,2M раствора.

Решение:

Первый способ.

Массу растворенного вещества в определенном объеме раствора с заданной молярной концентрацией можно рассчитать по следующей формуле:

$$m(X) = C(X) \cdot M(X) \cdot V(p - pa),$$

где C(X) – молярная концентрация раствора, моль/л;

M(X) – молярная масса растворенного вещества, г/моль;

V(p-pa) – объем раствора, л.

Следовательно,

$$m(\text{Na}_2\text{SO}_4) = C(\text{Na}_2\text{SO}_4) \cdot M(\text{Na}_2\text{SO}_4) \cdot V(p-pa) = 0.2 \cdot 142 \cdot 0.5 = 14.2 \text{ }\Gamma,$$

где $M(Na_2SO_4) = 142$ г/моль.

<u>Второй способ.</u> Исходя из понятия молярной концентрации, составляем и решаем пропорцию:

в 1 л 0,2M раствора содержится 0,2 моль Na₂SO₄

в 0,5 л 0,2M раствора содержится х моль Na₂SO₄

$$x = 0.2 \cdot 0.5 = 0.1$$
 моль

Так как $M(\text{Na}_2\text{SO}_4)=142$ г/моль, то масса сульфата натрия $m(\text{Na}_2\text{SO}_4)=0,1\cdot 142=14,2$ г.

Пример 3. Сколько мл 20% раствора хлорида кальция ($\rho = 1,18 \text{ г/мл}$) и воды потребуется для приготовления 500 мл 12 % раствора ($\rho = 1,10 \text{ г/мл}$) этой соли.

Решение:

Рассчитаем массу 500 мл 12.% раствора хлорида кальция: $m(p-pa\ 12\%) = 500 \cdot 1,10 = 550\ \Gamma.$

Масса хлорида кальция m в этом растворе будет равна:

$$m(CaCl_2) = 550 \cdot 0, 12 = 66 \ \Gamma.$$

Определим массу исходного 20 % раствора, в котором содержится 66 г $CaC1_2$:

$$\omega$$
 (CaC1₂) = m(CaC1₂) / m (p-ра исх)

$$m(p-pa \ ucx) = 66 : 0,2 = 330 \ г.$$

Объем этого раствора V окажется равным:

V(p-ра исх) = 330 : 1,18 = 279,7 мл, $V(H_2O) = V(p$ -ра 12%) - V(p-ра исх) = 500 – 279,7 = 220,3 мл Ответ: 279,7 мл 20 % раствора $CaC1_2$ и 220,3 мл H_2O

Пример 4. Смешали 50 г водного раствора КОН с массовой долей щелочи 20% и 250 г 8 % раствора КОН. Рассчитайте массовую долю (в %) гидроксида калия в полученном растворе.

Решение:

Содержание КОН в первом растворе $m(KOH_1)$ составит:

$$m(KOH_1) = 50.0, 2 = 10 \text{ }\Gamma.$$

Содержание КОН во втором растворе m(КОН₂) составит:

$$m(KOH_2) = 250 \cdot 0.08 = 20 \text{ r.}$$

Масса конечного раствора окажется равной $m(p-pa) = 50 + 250 = 300 \, \Gamma$, а общее содержание в нем КОН будет равно $m(KOH) = 10 + 20 = 30 \, \Gamma$.

Массовая доля КОН в конечном растворе ω (КОН) будет равной:

$$\omega$$
(KOH) = 30/300 = 0,1 или 10 %.

Пример 5.

Для раствора серной кислоты с массовой долей $\omega(H_2SO_4) = 12\%$ и плотность раствора 1,083 г/мл рассчитайте молярную концентрацию и титр этого раствора.

Решение:

По условию в 100 г 12%-го раствора содержится 12 граммов серной кислоты H_2SO_4 .

Найдем объем 100 г раствора.

$$V(p-pa) = m(p-pa) / \rho(p-pa) = 100 / 1,083 = 92,3 \text{ мл} = 0,0923 \text{ л}$$

Рассчитаем молярную концентрацию по формуле:

$$C(X) = \frac{m(X)}{M(X) \cdot V(p - pa)}$$
 $M(H_2SO_4) = 98 \Gamma/MOЛЬ$

$$C(H_2SO_4) = 12 / (98.0,00923) = 1,33$$
 моль/л

Рассчитаем титр раствора по формулам:

$$T(X) = \omega(X) \cdot \rho(p-pa)$$

$$T(H_2SO_4)=\omega(H_2SO_4)\cdot \rho(p\mbox{-}pa)=0,12\cdot 1,083=0,13$$
 г/мл или

$$T(X) = \frac{m(X)}{V(p-pa)}$$

В 100 г раствора содержится 12 г H_2SO_4 , а объём этого раствора составляет 92,3 мл.

$$T(H_2SO_4) = m(H_2SO_4) / V(p-pa) = 12/92,3 = 0,13$$
 г/мл.

Пример 6. В 415 г воды растворили 112 л (н.у.) аммиака. Рассчитайте массовую долю аммиака в полученном растворе.

Решение:

Рассчитаем массу аммиака.

1 моль газа при н.у. занимает объём 22,4 л.

Следовательно, 112/22,4 = 5 моль газа NH_3 .

 $M(NH_3) = 17\Gamma/моль$. Тогда $m(NH_3) = 5.17 = 85 \Gamma$.

Масса раствора составит:

$$m(p-pa) = m(NH_3) + m(H_2O) = 85 + 415 = 500 \Gamma$$

Найдем массовую долю аммиака в растворе.

$$\omega(NH_3) = m(NH_3)/m(p-pa) = 85/500 = 0,17$$
 или 17%

Демонстрационный химический эксперимент

Оборудование и реактивы: технические весы, круглая плоскодонная колба на 50 или 100 мл, шпатель, ложечка, стакан на 50 мл, мерный цилиндр на 50 мл, хлорид натрия (NaCI), дистиллированная вода.

Задание: Приготовить 8% - ный раствор хлорида натрия (NaCI) массой 50 г. Расчёт массы твердого вещества NaCI и объема воды, которые необходимы для приготовления раствора.

Формула расчета:
$$\omega = \frac{m \, s - sa}{m \, p - pa} \cdot 100\%$$
, отсюда $m_{\text{B-Ba}} = \frac{\omega \cdot m \, p - pa}{100\%}$ $m_{\text{p-pa}} = m_{\text{B-Ba}} + m \; (\text{H}_2\text{O}); \; m \; (\text{H}_2\text{O}) = m_{\text{p-pa}} - m_{\text{B-Ba}}$ $\frac{\text{Дано:}}{\omega_{\text{NaCI}} = 8\%}$ 1 г H₂O занимает объем 1 мл или 1 см³ $\frac{\text{Решение:}}{\text{Найти:}}$ $m_{\text{NaCI}} = \frac{8\% \cdot 50c}{100\%} = 4\Gamma; \; m(\text{H}_2\text{O}) = 50 \; \Gamma - 4 \; \Gamma = 46\Gamma$ $m(\text{H}_2\text{O}) - ?$ р (H₂O)=1г/см³ или 1г/мл $m \; (\text{H}_2\text{O}) = \rho \cdot \text{V}$, отсюда $V = \frac{m}{\rho}$ $V \; (\text{H}_2\text{O}) = \frac{46c}{13/4\pi} = 46 \; \text{мл}$

Ответ: для приготовления данного p-pa необходимо 4г NaCI и 46 мл H_2O .

Приготовление раствора

- 1. На технических весах взвешиваем в стаканчике 4 грамма хлорида натрия
- 2. Мерным цилиндром отмеряем вычислительный объем воды (46 мл).
- 3. Через воронку с коротким концом пересыпаем NaCI в колбу для приготовления раствора.
- 4. В эту же колбу небольшими порциями переливаем из цилиндра всю воду, споласкивая стенки воронки.
- 5. Круговыми движениями в горизонтальной плоскости перемешиваем содержимое колбы до полного растворения кристаллического вещества.

Порядок выполнения работы

Решить задания в соответствии со своим вариантом, записать формулы, необходимые для расчетов, подтвердить все выводы подробными расчётами. Критерии оценивания: за правильный ответ в вопросах ставится 2 балла; за неправильный ответ -0 баллов.

Оценка	Кол-во правильных ответов в (%)	Кол-во правильных ответов в баллах
отлично	91-100	10
хорошо	75-90	8-9
удовлетворительно	60-74	6-7
неудовлетворительно	0-59	менее 6

Вариант 1

- 1. Рассчитайте массу кристаллического вещества Na_2CO_3 и объём воды, которые необходимы для приготовления 50 мл раствора с $\omega(Na_2CO_3)$ = 7% и плотностью 1,070 г/мл.
- 2. Чему равен титр раствора в задании №1?
- 3. Рассчитайте массу кристаллического вещества NaOH, которая необходима для приготовления 50 мл 0,5М раствора.
- 4. Титр раствора NaOH равен 0,00156 г/мл. Рассчитайте молярную концентрацию раствора гидроксида натрия.
- 5. Смешали 560 граммов 1,5% раствора КОН и 340 мл воды. Чему равна концентрация полученного раствора (массовая доля растворенного вещества)?

- 1. Рассчитайте массу кристаллического вещества Na_2HPO_4 и объём воды, которые необходимы для приготовления 200 мл раствора с $\omega(Na_2HPO_4)$ = 2% и плотностью 1,02 г/мл.
- 2. Чему равен титр раствора в задании №1?

- 3. Рассчитайте массу кристаллического вещества Na₂SO₄, которая необходима для приготовления 200 мл 0,02M раствора.
- 4. Титр раствора КОН равен 0,0336 г/мл. Рассчитайте молярную концентрацию раствора гидроксида калия.
- 5. Смешали 150 граммов 4%-ного раствора H_2SO_4 и 250 граммов 5%-ного раствора H_2SO_4 . Чему равна концентрация полученного раствора (массовая доля растворенного вещества)?

Практическое занятие №4

Тема: Изучение химических свойств кислот: взаимодействие с металлами, оксидами металлов, основаниями и солями.

Изучение химических свойств щелочей и нерастворимых оснований.

Время выполнения - 90 мин.

Цель работы:

Обучающийся должен научиться:

- 1. проводить характерные реакции для кислот;
- 2. научиться определять с помощью качественных реакций и индикаторов наличие ионов в растворе кислоты.
- 3. Проводить характерные реакции для щелочей. Научиться определять с помощью индикаторов наличие гидроксид ионов (OH) в щелочах.
- 4. Получать реакцией обмена нерастворимые основания и изучить их свойства.

Теоретическая часть

Все неорганические вещества подразделяются на 4 класса: оксиды, кислоты, основания и соли.

Соединения каждого элемента с кислородом называются оксидами, оксиды бывают: твердые, жидкие и газообразные. Есть оксиды хорошо растворимые в воде (CaO, Na₂O), есть оксиды в воде нерастворимые (CuO,AI₂O₃). Все оксиды подразделяются на три группы: кислотные (CO₂, N₂O₅), основные (Na₂O, CaO, CuO) и амфотерные (AI₂O₃, ZnO). Кислотные оксиды взаимодействуют с водой и основаниями, основные могут взаимодействовать с водой и кислотами. Амфотерные с основаниями и кислотами.

<u>Кислоты</u> — это сложные вещества, состоящие из кислотных остатков, связанных с атомами водорода. В водном растворе они диссоциируют на катионы металла и анионы кислотного остатка: $H_2SO_4 \rightarrow 2H^+ + SO_4^{2-}$

Основность кислот определяется наличием атомов водорода в молекуле.

Свойства кислот:

- 1. Растворы кислот изменяют цвет индикаторов: синего лакмуса в красный, метилового оранжевого в красный, универсального –в красный.
- 2. Кислоты взаимодействуют с основаниями.
- 3. Кислоты взаимодействуют с основными оксидами.
- 4. Кислоты взаимодействуют с металлами.
- 5. Кислоты взаимодействуют с солями.

Основания (гидроксиды) — это сложные вещества, состоящие из металла и одной или нескольких гидроксогрупп. Количество гидроксогрупп (ОН) зависит от валентности металла. Например: КОН; Ва(ОН)₂,; АІ(ОН)₃.

В водном растворе они диссоциируют на катионы металла и одну или несколько гидроксогрупп:

$$NaOH \rightarrow Na^+ + OH^ Ba(OH)_2 \rightarrow Ba^{2+} + 2OH^-$$

Все основания делятся на <u>растворимые в воде —</u> щелочи (КОН) и <u>нерастворимые в воде: $Cu(OH)_2$.</u>

Амфотерные: $AI(OH)_3$, $Zn(OH)_2$, проявляющие свойства и кислот и оснований.

Свойства оснований.

- 1. 1. Растворы оснований изменяют цвет индикаторов: бесцветный фенолфталеин в малиновый, красный лакмус и универсальный индикатор в синий, метилоранж в желтый.
- 2. Основания взаимодействуют с кислотами.
- 3. Основания взаимодействуют с кислотными оксидами.
- 4. Нерастворимые основания при нагревании разлагаются.

Порядок выполнения работы.

Критерии оценивания: в соответствии с критериями оценки экспериментальных умений. Оценка ставится на основании наблюдения за обучающимися в процессе работы и проверки письменного отчета.

Приборы и реактивы: штатив с пробирками, фарфоровая чашка, спиртовка, спички, держатель для пробирок, планшетка с ячейками для капельных реакций (стеклянная трубочка и предметное стекло), порошок оксида меди, гранулы цинка, медные стружки, капельницы с растворами: NaOH, HCI, H₂SO₄,AgNO₃, BaCI₃

Индикаторы: с/л; м/о; ф/ф; универсальный индикатор.

<u>Справочные таблицы:</u> таблица растворимости, индикаторная шкала для определения рН раствора.

Опыт№1. Действие кислот на индикаторы

Возьмите планшетку для капельных реакций и накапайте в ячейки по 15 капель растворов HCI, H₂SO₄.

В каждую из ячеек добавьте по маленькому кусочку с/л, м/о, ϕ/ϕ и ун/инд.

Наблюдайте, в каких ячейках и как изменилась окраска индикатора. Сравните цвет ун/инд. Бумажки со шкалой рН растворов. Отметьте наблюдения в соответствующей графе таблицы.

В графе: уравнение реакции написать диссоциацию кислоты в растворе, указать рН среды и отметить концентрация каких ионов [H]⁺ или [OH]⁻ больше?

Вывод о действии индикаторов на растворы кислот. Наличие какого иона в растворе кислот подтверждают индикаторы? Какая это реакция?

Опыт № 2. Действие кислот на металлы.

В одну пробирку поместите гранулу цинка, а в другую медной стружки. В первую пробирку добавьте 1мл (1см по высоте пробирки) раствора кислоты. Точно также прилейте кислоту в пробирку с медными стружками.

Цинк реагирует с кислотами при обычных условиях. Медь при нормальной температуре не реагирует с кислотами. При нагревании медь реагирует с концентрированной H_2SO_4 .

Возьмите пробирку с медью и серной кислотой с помощью держателя и осторожно нагрейте над спиртовкой. При этом будет выделятся бесцветный газ с резким запахом (нюхать осторожно), а в пробирке, образуется раствор синего цвета. (Опыт проводить демонстрационно под тягой)

Задание:

- 1. Найдите Zn и Cu в ряду активности металлов и подумайте, на основании каких свойств составлен этот ряд.
- 2. Напишите соответствующие графы ваши наблюдение и уравнение реакций в молекулярном и сокращенном ионном виде. Составьте электронный баланс в уравнении ZncHCI. К какому типу эти реакции относятся?

Опыт №3. Взаимодействие кислот с основными оксидами.

В пробирку насыпьте немного оксида меди(II). Прилейте 1 мл серной кислоты. Пробирку слегка нагрейте. При подогревании в пробирке с оксидом меди (II) раствор приобретает голубой цвет.

С помощью стеклянной трубочки перенесите несколько капель раствора на предметном стекле или фарфоровую чашу. Выпарьте его и рассмотрите кристаллики. После выпаривания раствора на предметном стекле или фарфоровой чаше выделяются кристаллики соли. Оформите опыт в таблицы.

Вопросы:

- 1. Какие признаки подтверждают, что основные оксиды реагируют с кислотами?
- 2. Какие вещества выделились на стеклянных пластинках после выпаривания раствора? Напишите химические формулы этих веществ.
 - 3. Составьте уравнения реакций, которые протекали в этих опытах. Сформулируйте вывод.

Опыт №4. <u>Взаимодействие кислот с основаниями.</u> (Реакция нейтрализации).

В пробирку налейте 1 мл раствора NaOH и добавьте к нему индикаторную бумажку ф/ф (или несколько капель его раствора). К раствору малинового цвета прибавьте по каплям соляную или серную кислоту. После каждой капли пробирку встряхивайте. Происходит обесцвечивание раствора.

Вопросы:

Почему раствор кислоты следует добавлять осторожно, по каплям?

Оформить опыт в таблице. Составить уравнение реакции между кислотой и щелочью. К какому типу эта реакция относится?

Опыт №5. <u>Взаимодействия кислот с солями. Качественные реакции</u> на хлорид – ионы и сульфат – ионы.

В одну пробирку налейте 1 мл раствора HCI и добавьте несколько капель раствора нитрата серебра (AgNO₃). Что наблюдаете?

Опыт №6.Получение нерастворимого основания $Cu(OH)_2$ и изучение его свойств (заголовок написать на все графы).

- 1.Получите немного гидроксида меди (II): $Cu(OH)_2$. Для этого в пробирку налейте 1 мл раствора NaOH и добавьте столько же раствора сульфата меди (II): $CuSO_4$ или другой растворимой соли меди. Что наблюдали? Разделите полученный осадок на 2 пробирки.
- 2.В 1-ю пробирку с осадком добавьте (до полного его растворения) соляную кислоту.

В результате реакции в пробирке образуется голубой раствор.

3. Перенесите несколько капель осадка из 2-й пробирки на стеклянную пластинку (с помощью стеклянной трубочки) или выпарительную чашку и нагрейте в пламени спиртовки (выпарьте). Выделяется черный налет, затем кристаллики голубого цвета.

Запишите наблюдения, уравнения реакции и выводы в тетради.

Запишите, что делали, что наблюдали; составьте молекулярное и ионное уравнения реакций. Отметьте, какое вещество выпало в осадок с помощью символа \downarrow .

Напишите вывод: как получить нерастворимое основание.

Составления отчета

- 1. Тема.
- 2. Цель работы.
- 3. Оборудование и реактивы.
- 4. Оформить отчет в таблице.

Что делали	Что наблюдали	Уравнение реакций	Выводы
Опыт 1:		[H] ⁺ >[OH] ⁻	
(Название описание)	$c/\pi \rightarrow$	Среда кислая	
	$M/O \rightarrow$		
	ун.инд→		
Опыт 2:	$\phi/\phi \rightarrow$		

Записать: название опытов, их описание, наблюдения, составить уравнения в молекулярном и ионном виде. Отметить осадки (\downarrow), выделение газа (\uparrow).

Сделать выводы по каждому опыту. Общий вывод по работе (по цели) При наличии времени выполнить экспериментальное задание.

Подтвердить с помощью качественных реакций, что выданное Вам вещество.

1 вариант

2 вариант

Соляная кислота –НСІ

Серная кислота - H₂SO₄

Оформление

- 1. Наличие ионов H^+ в растворе определяют...
- 2. Наличие определенного кислотного остатка определяется реактивом...

Требование к оформлению.

- записи вести аккуратно, синим пастиком; таблицу оформить, используя линейку и карандаш;
- отметить осадки ↓;
- выделение газа ↑;
- соблюдать технику безопасности;
- по окончании работы отработанные растворы в пробирках слить в банку для использованных растворов.
- -привести в порядок рабочее место, убрать мусор.

Практическое занятие № 5

Тема: Изучение химических свойств солей. Испытание солей индикаторами. Гидролиз солей различного типа. рН-среды раствора.

Время выполнения - 90 минут

Цель:

Курсант должен научиться:

- 1. Проводить характерные реакции для солей.
- 2. На основании «ряда электрохимического напряжения металлов» изучить отношение металлов к растворам солей.
- 3. Исследовать действие растворов различных солей на индикаторы.
- 4. Составить уравнения реакции гидролиза солей, растворы которых имели кислую, щелочную или нейтральную среду.

Теоретическая часть

<u>Соли</u>- это сложные вещества, состоящие из атомов металлов и кислотных остатков. С точки зрения ТЭД – это электролиты, которые в водном растворе диссоциируют на катионы металла и анионы кислотных остатков:

$$CuSO_4 \rightarrow Cu^{2+} + SO_4^{2-}$$

 $FeCI_3 \rightarrow Fe^{3+} + 3CI^{-}$

Свойства солей

Соли взаимодействуют с водой (хорошо растворимые с основаниями, кислотами, металлами, между собой). По отношению к воде соли подразделяются: на хорошо растворимые, нерастворимые и малорастворимые.

Металлы по их активности можно расположить в ряд, получивший название «ряд электрохимического напряжения металлов». В этот ряд вместе с металлами включен и водород. Металлы, стоящие в ряду напряжений до водорода, способны вытеснять водород из кислот. Каждый предыдущий металл ряда вытесняет все последующие металлы из растворов их солей.

Ряд электрохимического напряжения металлов:

K, Na, Ca, Mg, AI, Zn, Cr, Fe, Pb, H, Cu, Hg, Ag, Au.

Гидролиз солей

Гидролиз солей — это процесс взаимодействия ионов соли с водой, в результате которого образуется слабый электролит и меняется характер среды.

При диссоциации воды образуется очень незначительное, одинаковое количество ионов $H_2O \leftrightarrow H^+ + OH^-$, причем произведение концентраций этих ионов величина постоянная и при 25 $^0C [H^+] \cdot [OH^-] = 10^{-14}$.

Растворы, в которых концентрации ионов H^+ и OH^+ одинаковы, имеют нейтральную среду.

Растворы, в которых преобладают ионы Н⁺, имеют кислую среду.

Растворы, в которых преобладают ионы OH^- , имеют щелочную среду.

Для характеристики среды удобнее использовать не концентрацию ионов водорода, а водородный показатель pH.

$$pH = -lg[H^+]$$

Водородный показатель равен отрицательному десятичному логарифму молярной концентрации ионов водорода.

Если $[H^+] = [OH^-]$, значит $pH = -lg10^{-7} = 7$ – среда нейтральная,

Если pH > 7 – среда щелочная,

Если pH < 7 – среда кислая.

Значения рН изменяются от 0 до 14.

Нейтральная среда в растворах солей, образованных сильной кислотой и сильным основанием. Например, NaCI, K_2SO_4 . Универсальный индикатор не меняет окраски.

Щелочная среда в растворах солей, образованных сильным основанием и слабой кислотой. Например, K_2CO_3 . Универсальный индикатор в растворе этой соли окрашивается в синий цвет. В растворе избыток гидроксид-ионов.

Кислая среда у растворов солей, образованных слабым основанием и сильной кислотой. Например, раствор $AlCI_3$, $ZnSO_4$. Универсальный индикатор в растворе этой соли окрашивается в розово-красный цвет.

Порядок выполнения работы.

Критерии оценивания: в соответствии с критериями оценки экспериментальных умений. Оценка ставится на основании наблюдения за обучающимися в процессе работы и проверки письменного отчета.

Оборудование и реактивы: штатив с пробирками, гранулы цинка, капельницы с растворами солей: $CuSO_4$, $BaCI_2$, K_2CO_3 , $ZnSO_4$, $AlCl_3$, H_2SO_4 , NaOH, индикаторы: красный лакмус, синий лакмус, фенолфталеин, универсальный индикатор.

<u>Справочные таблицы:</u> Таблица растворимости кислот, оснований, солей, «Ряд электрохимического напряжения металлов».

Опыт №1. Взаимодействие растворов солей с металлами.

В пробирку опустить кусочек цинка и добавить 4-5 капель раствора сульфата меди. Что наблюдается при этом?

Запишите наблюдения и ответьте на вопросы:

1) Какие изменения произошли на поверхности металла? Какое вещество выделилось из раствора медного купороса и что образовалось в растворе?

- 2) Написать уравнение реакции в молекулярном и ионном виде между сульфатом меди и цинком.
- 3) Пользуясь рядом электрохимического напряжения металлов напряжений объяснить эту реакцию.

Опыт №2 Взаимодействие растворов солей друг с другом.

В пробирку внести 4-5 капель хлорида бария и добавить 4-5 капель раствора сульфата цинка. Что наблюдается при этом? Записать наблюдения и ответить на вопросы:

- 1) Какое вещество выпало в осадок. Какого цвета осадок?
- 2) Написать уравнения реакций, назвать полученные вещества и сделать вывод.
 - 3) К какому типу реакций следует отнести данную реакцию.

Опыт №3. Взаимодействие растворов солей со щелочами

В пробирку внести 4-5 капель сульфата меди и добавить 4-5 капель раствора гидроксида натрия. Что наблюдается при этом? Записать наблюдения и ответить на вопросы:

- 1) Какое вещество выпало в осадок. Какого цвета осадок?
- 2) Написать уравнения реакций, назвать полученные вещества и сделать вывод.
 - 3) К какому типу реакций следует отнести данную реакцию.

Опыт №4. Взаимодействие растворов солей с кислотами.

В пробирку внести 4-5 капель карбоната калия и добавить 4-5 капель раствора серной кислоты. Что наблюдается при этом? Записать наблюдения и ответить на вопросы:

- 1) Какое вещество выделяется в виде газа?
- 2) Написать уравнения реакций, назвать полученные вещества и сделать вывод.
 - 3) К какому типу реакций следует отнести данную реакцию.

Опыт № 5. Гидролиз солей.

- 1. В первую пробирку внести 4-5 капель раствора хлорида бария, во вторую -4-5 капель раствора карбоната калия, в третью -4-5 капель хлорида алюминия и опустите в каждый раствор универсальный индикатор.
 - 2. Укажите окраску индикатора в растворе соли.
- 3. Напишите уравнения реакций гидролиза солей, растворы которых имели кислую или щелочную среду. Уравнения реакций запишите в молекулярной и ионно-молекулярной формах.

Составление отчета.

- 1.Тема
- 2. Цель работы

- 3. Оборудование и реактивы
- 4. Оформить отчет в таблице.

Что делали	Что наблюдали	Уравнение реакций	Выводы
<u>Опыт №</u> 1.			

Записать: Название опытов, их описание, наблюдения, составить уравнения в молекулярном и ионном виде. Отметить осадки (↓), выделение газа (↑). Сделать выводы по каждому опыту. Общий вывод по работе (согласно цели работы).

Практическое занятие №6

Тема: Изучение реакций замещения, реакций ионного обмена, окислительновосстановительных реакций. газа и воды.

Время выполнения – 90 минут.

Цель:

- 1) Обучающийся должен закрепить знания о типах химических реакций.
- 2) По результатам проведения реакций уметь писать уравнение химических реакций трех видов: молекулярное, полное и сокращенное ионное уравнения.
- 3) Уметь решать окислительно-восстановительные реакции методом электронного баланса.

Теоретическая часть

Химическая реакция — это превращение одного или нескольких исходных веществ (реагентов) в другие вещества, при этом ядра атомов не меняются, происходит только перераспределение электронов и ядер, и образуются новые химические вещества.

Химические реакции классифицируются, например, по изменению степени окисления атомов в реагирующих веществах, по числу и составу исходных и образующихся веществ (Табл.1,2).

Таблица 1. *Классификация химических реакций по изменению степени окисления атомов*

Химическая реакция	Определение	Примеры
Проходящая без	Реакция, в которой степень	$2AlCl_3 + 3Na_2S + 6H_2O \rightarrow$
изменения степени	окисления каждого атома	$2Al(OH)_3\downarrow + 3H_2S\uparrow + 6NaCl$
окисления	после реакции остается	$H_2SO_4 + NaOH \rightarrow NaHSO_4 +$
	неизменной	H_2O
Проходящая с	реакция, при которой	
изменением степени	происходит переход	

	1	
окисления атомов	электронов от одних атомов,	
(окислительно-	молекул или ионов к другим.	
восстановительная)		
• Межмолекулярная	атомы окислителя и	$H_2S^{-2} + O_2^0 \longrightarrow S^0 + H_2O^{-2}$
окислительно-	восстановителя, входят в	$2KI^{-1} + Cl_2^{\ 0} \rightarrow 2KCI^{-1} + I_2^{\ 0}$
восстановительная	состав молекул различных	
реакция	исходных веществ.	
	атомы окислителя и	.5. 2
	восстановителя, входят в	$2KC1^{+5}O_3^{-2} = 2KC1^{-} + 3O_2^{0}$
• Внутримолекуляр-	состав молекулы одного и	
ная окислительно-	того же исходного вещества и	
восстановительная	являются атомами различных	
реакция	элементов	
	атомы окислителя и	
• Диспропорциони-	восстановителя входят в	$4K_2S^{+4}O_3 = 3K_2S^{+6}O_4 + K_2S^{-2}$
рование	состав одного и того же	
•	исходного вещества, являются	
	атомами одного и того же	
	элемента и имеют одинаковую	
	степень окисления.	
	атомы окислителя и	2 0
• Контрпропорциони-	восстановителя входят в	$S^{+4}O_2 + 2H_2S^{-2} = 3S^0 + 2H_2O$
рование	состав различных исходных	
1	веществ, но являются атомами	
	одного элемента в различной	
	степени окисления, при этом	
	образуются молекулы одного	
	и того же продукта.	
Tofarra 2 Vancoud		

 Таблица
 2.
 Классификация химических реакций по числу и составу исходных

 и образующихся веществ

Химическая	Определение	Примеры
реакция		
Разложения	Реакция, в которой из одного	$2HgO = 2Hg + O_2$
$A \rightarrow B + C + D$	исходного вещества образуется	$4HNO_3 = 2H_2O + 4NO_2 + O_2$
	несколько новых веществ	
Замещения	Реакция между простым и	$Zn + CuSO_4 = ZnSO_4 + Cu$
$A + BC \rightarrow AB + C$	сложным веществами, в	$2KBr + Cl_2 = 2KCl + Br_2$
	результате которой атомы	
	простого вещества замещают	
	атомы одного из элементов	
	сложного вещества	
Обмена	Реакция, в результате которой	$2AgNO_3 + H_2SO_4 =$
$AB + CD \rightarrow AD + CB$	два вещества обмениваются	$Ag_2SO_4 + 2HNO_3$
	своими составными частями,	$NaOH + HCl = NaCl + H_2O$
	образуя два новых вещества	

Соединения	Реакция, в результате которой	$HCl + NH_3 = NH_4Cl \downarrow$
$A + B + C \rightarrow D$	из двух или нескольких	$4\text{Fe}(\text{OH})_2 + 2\text{H}_2\text{O} + \text{O}_2 =$
	веществ образуется одно новое	4Fe(OH) ₃

Порядок выполнения работы.

Критерии оценивания: в соответствии с критериями оценки экспериментальных умений. Оценка ставится на основании наблюдения за обучающимися в процессе работы и проверки письменного отчета.

Приборы и реактивы: штатив с пробирками, тигель, спиртовка, железный гвоздь или канцелярские скрепки, капельницы с растворами $CuSO_4$, $ZnSO_4$, H_2SO_4 , NaOH, HCl, $FeSO_4$, $KMnO_4$, кристаллический $(NH_4)_2Cr_2O_7$. Справочные материалы: таблица растворимости кислот, оснований солей в воде.

Опыт №1. Реакция замещения меди железом в растворе сульфата меди (II).

В пробирку опустите железный гвоздь (или канцелярскую скрепку) и добавьте 10-12 капель раствора сульфата меди. Что наблюдаете при этом? К какому типу относится данная реакция? Запишите уравнение реакции в молекулярном виде и решите его методом электронного баланса, укажите окислитель, восстановитель, процессы окисления и восстановления, продукты окисления и восстановления.

Опыт №2. Реакции обмена между растворами электролитов.

В две пробирки внесите по 3-4 капли раствора сульфата цинка и добавьте в каждую пробирку по 1 капле гидроксида натрия. Что наблюдаете при этом? Проверьте полученный осадок на амфотерные свойства. Для этого в первую пробирку внесите 6-8 капель соляной или серной кислоты, а во вторую — 6-8 капель гидроксида натрия. Растворение осадка в обеих пробирках доказывает его амфотерность.

Запишите уравнения протекающих реакций в молекулярной и ионномолекулярной формах. К какому типу относятся реакции?

Опыт №3. Окислительно-восстановительные реакции.

- 1) В пробирку внесите 3-4 капли раствора перманганата калия и добавьте по 3-4 капли растворов серной кислоты и сульфата железа (II). Что наблюдаете при этом? К какому типу относится данная реакция? Запишите уравнение реакции в молекулярном виде и решите его методом электронного баланса, укажите окислитель, восстановитель, процессы окисления и восстановления, продукты окисления и восстановления.
- 2) В пробирку внесите по 3-4 капли растворов гидроксида натрия и сульфата железа (II). Что наблюдаете при этом? К какому типу относится

данная реакция? Запишите уравнения реакции в молекулярной и ионномолекулярной формах.

Оставьте полученный осадок на некоторое время на воздухе. Что наблюдаете? Запишите уравнение реакции в молекулярном виде и решите его методом электронного баланса, укажите окислитель, восстановитель, процессы окисления и восстановления, продукты окисления и восстановления. К какому типу относится данная реакция?

3) Демонстрационный опыт. В тигель поместите кристаллический дихромат аммония и нагрейте его над пламенем спиртовки. Что наблюдаете при этом? К какому типу относится данная реакция? Запишите уравнение реакции в молекулярном виде и решите его методом электронного баланса, укажите окислитель, восстановитель, процессы окисления и восстановления, продукты окисления и восстановления.

Составление отчета.

- 1.Тема
- 2. Цель работы
- 3. Оборудование и реактивы
- 4. Оформить отчет в таблице.

Что делали	Что наблюдали	Уравнение	Выводы
		реакций	
Опыт №1.			

Записать: Название опытов, их описание, наблюдения, составить уравнения в молекулярном и ионном виде. Отметить осадки (↓), выделение газа (↑). Сделать выводы по каждому опыту. Общий вывод по работе (согласно цели работы).

Практическое занятие № 6

Тема: Решение экспериментальных задач на распознавание в растворе катионов металлов и анионов, образуемых неметаллами.

Время выполнения – 90 мин

Цель:

- 1) С помощью качественных реакций научится определять содержание катионов и анионов в неорганических веществах.
- 2) Уметь решать экспериментальные задачи на: получение веществ из названных исходных; распознавание веществ; подтверждение качественного состава выданных веществ;

проведение реакций характерных для данного вещества; задачи, связанные с наблюдением и объяснением явлений.

Оборудование и реактивы: штатив с пробирками, спиртовка, спички, держатель для пробирок, растворы: HCl, NaOH, BaCl₂, ZnSO₄, AgNO₃, Na₃PO₄, K_2 CO₃.

Индикаторы: фенолфталеин (ф/ф), синий и красный лакмус(с/л, кр/л), метиловый оранжевый (м/о).

<u>Справочные таблицы:</u> «Определение ионов», «Качественные реакции катионов и анионов», «Растворимость кислот, щелочей и солей».

Порядок выполнения работы:

Критерии оценивания: в соответствии с критериями оценки экспериментальных умений. Оценка ставится на основании наблюдения за обучающимися в процессе работы и проверки письменного отчета.

I. Выполнить задания

ЗАДАНИЕ 1. Проделать качественные реакции на катионы и анионы.

ЗАДАНИЕ 2. Опытным путем определить, в какой пробирке находится каждое из выданных веществ: HCl, NaOH, ZnSO₄, Na₃PO₄, K₂CO₃. Растворы веществ находятся в пробирках под номерами: 1, 2, 3, 4, 5.

1МЛ ВЕЩЕСТВА = 1 СМ.

Опыт 1. Доказательство содержания ионов водорода (H^+) в растворах кислот.

 $K\ 1$ мл HCl добавить с/л. Что наблюдали? Наличие каких ионов определяет данный индикатор? Отметить избыток концентрации ионов $[H]^+$ в растворе, pH-среды, кислотность среды.

Опыт 2. Доказательство содержания гидроксид ионов водорода (OH⁻) в растворах щелочей.

К 1 мл NaOH добавить ф/ф. Что наблюдали? Отметить избыток концентрации ионов [OH] в растворе, рH-среды, кислотность среды.

Затем сюда же прилить по каплям кислоту HCl. Что наблюдали? Как называется данная реакция? Почему раствор обесцветился? Наличие каких ионов определяет ф/ф.

Опыт 3. Доказательство содержания иона (Cl⁻) в соляной кислоте.

К 1 мл HCl добавлять по каплям $AgNO_3$. Что наблюдали? Написать уравнение реакции в молекулярном и ионном виде. Сделать вывод, что данная реакция является качественной на ион Cl $^-$, реактив — ион Ag^+ .

Опыт 4. Доказательство содержания иона SO_4^{2-} в растворе $ZnSO_4$ К 1 мл $ZnSO_4$ добавить раствор $BaCl_2$. Что наблюдали? Написать уравнение реакции в молекулярном и ионном виде. Сделать вывод: наличие, какого иона определяли в растворе соли. Указать реактив.

Опыт 5. Доказательство содержания иона PO_4^{3-} в растворе Na_3PO_4 . К 1 мл Na_3PO_4 добавлять по каплям $AgNO_3$. Что наблюдали? Написатьуравнение реакции в молекулярном и ионном виде. Сделать вывод: наличие, какого иона определяли в растворе соли. Указать реактив.

Опыт 6. Доказательство содержания иона ${\rm CO_3}^{2-}$ в растворе ${\rm K_2CO_3}$. К 1 мл ${\rm K_2CO_3}$ добавить HCI. Наблюдали шипение. Написать уравнение реакции в молекулярном и ионном виде. Сделать вывод: наличиекакого иона определяли в растворе соли. Указать реактив.

II. Экспериментальное задание

С помощью качественных реакций определить вещества в пробирках под номерами: 1, 2, 3, 4, 5.

III. Дополнительные задания (при наличии времени).

Вариант 1. Получение оксида железа (III), исходя из хлорида железа(III).

$$FeCl_3 \rightarrow Fe(OH)_3 \downarrow \rightarrow Fe_2O_3$$

- 1) $FeCl_3 + \dots \rightarrow Fe(OH)_3 \downarrow + \dots$
- 2) $Fe(OH)_3 \downarrow \rightarrow$

Вариант 2. Получите двумя способами сульфат цинка, имея в своем расположении следующие вещества: ZnO, Zn, $H_2SO_4(p-p)$.

Вариант 3. Получите всеми возможными способами хлорид калия — KCl, имея в своём распоряжении следующие вещества: KOH, HCl, K_2SO_4 , $BaCl_2$, KNO_3

При выборе возможных способов получения KCl в этой задаче необходимо иметь в виду только идущие до конца реакции.

Составление отчета к заданию I.

- 1. Тема
- 2. Цель работы
- 3. Оборудование и реактивы
- 4. Оформить отчет в таблице

Что делали	Что наблюдали	Уравнение реакций	Выводы
	(рис.)		
1. К 1 мл НСІ	с/л покраснел	[H] ⁺ >[OH] ⁻	
добавить с/л.		рН<7, среда	
2. И т.д.			

Составить молекулярные и ионные уравнения, сделать выводы.

Составления отчета к заданию II

Реактивы	№ пробирок				
	№ 1	№ 2	№3	№4	№5
Индикатор ф/ф					
с/л					
BaCl ₂					
AgNO ₃					
HC1					
Вывод					

В выводе отметить вещество в пробирках под номерами.

Общий вывод (по цели).

Таблица 1. Определение ионов

Определяемый ион	Реактив, содержащий ион	Результат реакции	
H ⁺	Индикаторы	Изменение окраски	
OH.	Индикаторы	Изменение окраски	
Ag ⁺	CI-	Белый осадок	
Cu ²⁺	OH-	Синий осадок	
	S ²⁻	Черный осадок	
		Окрашивание пламени в сине- зеленый цвет	
Fe ²⁺	OH.	Зеленоватый осадок, который с течением времени буреет	
Fe ³⁺	OH.	Осадок бурого цвета	
Zn ²⁺	OH-	Белый осадок, при избытке ОН растворяется	
	S ²⁻	Белый осадок	
Al ³⁺	OH.	Белый желеобразный осадок, который при избытке ОН растворяется	
NH4 ⁺	OH-	Запах аммиака	
Ba ²⁺	SO4 ²⁻	Белый осадок	
		Окрашивание пламени в желто- зеленый цвет	
Ca ²⁺	CO3 ²⁻	Белый осадок	
or management		Окрашивание пламени в кирпично- красный цвет	
Na ⁺		Цвет пламени желтый	
K ⁺		Цвет пламени фиолетовый (через кобальтовое стекло)	
CI ⁻	Ag ⁺	Белый осадок	
	H ₂ SO ₄	Выделение бесцветного газа с резким запахом (HCI)	
Br ⁻	Ag ⁺	Желтоватый осадок	
	H ₂ SO ₄	Выделение SO ₂ и Вг ₂ (бурый цвет)	
Γ	Ag ⁺	Желтоватый осадок	
	H ₂ SO ₄	Выделение H ₂ S и I ₂ (фиолетовый цвет)	
SO ₃ ² -	н+	Выделение SO ₂ — газа с резким запахом, обесцвечивающего рас- твор фуксина и фиолетовых чернил	
CO ₃ ² -	H ⁺	Выделение газа без запаха, вызыва ющего помутнение известково воды	
CH3C00-	H ₂ SO ₄	Появление запаха уксусной кислоты	
NO ₃ -	H ₂ SO ₄ (конц.) и Cu	Выделение бурого газа	
SO4 ²⁻	Ba ²⁺	Белый осадок	
PO ₄ ³⁻	Ag ⁺	Желтый цвет	

КАЧЕСТВЕННЫЕ РЕАКЦИИ КАТИОНОВ И АНИОНОВ

				6/цв.		красн.	красн.		H ⁺
					желтый				Na ₊
					синий				K ⁺
					красн.				Li ⁺
2				синий	зелёный				Cu ²⁺
ОН ф/ф б/цв. малин. 6/цв. + Н ⁺							желтый	малинов.	1 Li ⁺ Cu ²⁺ OH Cl SO ₂
			хлопья белые						С1-
		белый							SO ₄ ²⁻
			желтый						PO ₄ ³⁻
	шипение								CO ₃ ²⁻

Практическое занятие № 8

Тема: Составление структурных формул изомеров и гомологов, номенклатура органических веществ.

Время выполнения –90 минут.

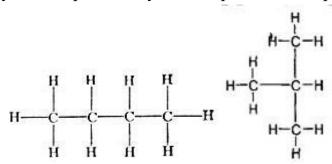
Цель:

- 1. обучающийся должен знать номенклатуру ИЮПАК;
- 2. уметь находить среди органических веществ изомеры и гомологи и давать им названия;
- 3. составлять структурные формулы органических веществ по их названию.

Теоретическая часть Изомерия и номенклатура

Гомологи — это соединения, которые сходны по строению и химическим свойствам, но отличаются по составу молекул на одну или несколько групп CH_2 , которая называется гомологичной разницей.

Гомологи образуют гомологичные ряды. Гомологический ряд — это ряд соединений, сходных по своему строению и химическим свойствам, которые отличаются друг от друга по составу молекул на одну или несколько гомологичных разниц CH_2 .


Простейший пример гомологического ряда — алканы (общая формула C_nH_{2n+2}): метан CH_4 , этан C_2H_6 , пропан C_3H_8 и т.д.

Если от молекулы предельного углеводорода отнять один атом водорода, то такой остаток называется углеводородным радикалам.

Названия одновалентных радикалов образуются из названий соответствующих предельных углеводородов, от которых они произошли с заменой окончания -ah или -un, например

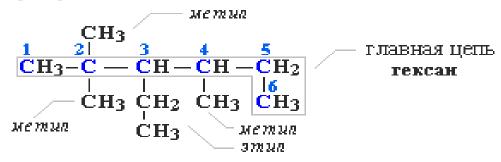
 CH_4 — метан $-CH_3$ — метил C_2H_6 — этан $-C_2H_6$ — этил $-C_3H_8$ — пропан $-C_3H_8$ — пропил

Эти радикалы имеют общее название алкилы. Отсюда произошло другое название предельных углеводородов — алканы. Начиная с C_4H_{10} предельные углеводороды могут иметь различное строение:

н-бутан изобутан

В первом случае все атомы углерода последовательно связаны друг с другом, во втором — имеются разветвления (боковая цепь). Соединения, обладающие одинаковым составом и молекулярной массой, но разным строением и поэтому обладающие разными свойствами называются изомерами. В приведенном выше примере для углеводорода состава C_4H_{10} характерны дваизомера: с неразветвленной сетью углеводородных атомов — нормальный бутан (н-бутан), с разветвленной - изобутан.

В органической химии обозначения состава и строения органических соединений с разветвленными изомерами в настоящее времяприменяют следующие номенклатуры:рациональную, женевскую, международную (ИЮПАК).


Современная международная (ИЮПАК) принята в 1957 г. в Париже. ИЮПАК означает: Всемирный союз чистой и прикладной химии (по первым буквам английского названия союза IUPAK –

IternationalUnionofPureandAppliedChemistry).

Согласно этой номенклатуре:

- для названия вещества берется самая длинная углеродная цепь, в состав которой входит одна или несколько функциональных групп;
- -нумерация цепи начинается с того конца, к которому ближе находится радикал;
- -называется номер углеродного атома, с которым связан заместитель (начиная с простейшего);
- в конце пишется название углеводорода, которому соответствует длинная цепь;
- если один и тот же радикал встречается несколько раз, то перед ним ставят приставку ди-, три-, тетра-, и т.д., чтобы указать число этих радикалов, а положение каждого из них обозначают цифрами.

Например:

2,2,4 - триметил - 3 - этилгексан

В алкенах и алкинахс неразветвленной цепью нумерацию проводят с того конца, ближе к которому находится двойная или тройная связь. В названии алкана, соответствующего этой родоначальной структуре, суффикс -ah заменяется на -eh или -uh соответственно.

$$1 2 3 4 3 2 1$$
 $CH_2 = CH - CH_2 - CH_3 CH_3 - C \equiv CH_2$ $\textit{бутен-1} \textit{пропин-1}$

В случае разветвления главной считается цепь, включающая двойную или тройную связь, даже если эта цепь и не является самой длинной. Нумерация углеводородных атомов начинают с ближнего к кратной связи конца цепи. Цифра, обозначающая положение кратной связи, обычно ставится после суффикса -ен, -ин.

2-этилпентен-1

Если кратных связей несколько, то в суффиксе указывается число таких связей (диен, триен и т.д.)

$$CH_3$$
 - $CH = CH$ - $CH = CH_2$ пентадиен-1, 3

Порядок выполнения работы

Решить задания в соответствии со своим вариантом, дать названия веществам в соответствии с номенклатурой ИЮПАК, составить структурные формулы по названию.

Критерии оценивания: за правильный ответ в вопросах ставится 2 балла; за неправильный ответ -0 баллов.

Оценка	Кол-во правильных ответов	Кол-во правильных ответов
	в (%)	в баллах
отлично	91-100	10
хорошо	75-90	8-9
удовлетворительно	60-74	6-7
неудовлетворительно	0-59	менее 6

Варианты заданий

Вариант 1

1. Дать определения:

Гомологи – это... Изомеры – это... 2. Дать названия следующим веществам:

a)
$$CH_3 - C = CH - CH_3$$
 6) $CH_3 - CH - CH_2 - CH_3$ B) $CH_3 - C - CH_2 - CH_3$ C C_2H_5 C C_2H_5

 CH_3

г)
$$CH_3$$
- $C\equiv C$ - CH_3 д) $CH_2\equiv CH$ - CH - CH_3 е) $CH\equiv C$ - CH_2 - CH_3 C_2H_5

- 3. Найти среди веществ, данных в задании №2, гомологи и изомеры.
- 4. По названию вещества составить структурные формулы:
- а) 2,3- диметилгексана
- б) 2-метил-4 этилгептан
- 5. Составить изомеры гексана (не менее 5) и дать им названия.

Вариант 2

1. Дать определения:

Гомологи- это...

Изомеры- это...

2. Назвать вещества.

д) CH₃-CH₂-CH₂-CH₃

- 3. Найти среди веществ, данных в задании №2, гомологи и изомеры.
- 4. По названию вещества составить формулу:
- а) 2,2- диметил-3- этилгексан б) 2,3- диметилгексен-3;
- 5. Написать изомеры гексана и дать им названия.

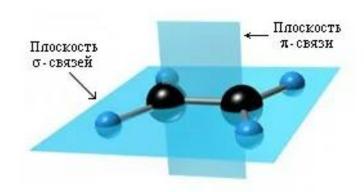
Практическое занятие № 9

Тема: Алкены. Гомологический ряд, изомерия, номенклатура. Химические свойства. Этилен, его получение, свойства и применение. Алкадиены.

Цель:

- 1. обучающийся должен знать номенклатуру ИЮПАК для алкенов;
- 2. уметь составлять структурные формулы изомерных алкенов и алкадиенов, давать им названия;
- 3. составлять структурные формулы веществ по их названию.

Теоретическая часть


Алкены — это непредельные или ненасыщенные нециклические углеводороды, в молекулах которых присутствует одна двойная связь между атомами углерода C=C.

Алкадиены — ациклические углеводороды, в молекулах которых присутствуют две двойные связи. Общая формула алкадиенов — $\mathbf{C}_{n}\mathbf{H}_{2n-2}$.

Гомологический ряд

Все алкены имеют некоторые общие или похожие физические и химические свойства. Они образуют гомологический ряд с общей формулой $\mathbf{C_nH_{2n}}$. Первым представителем этого ряда является этилен (этен) $\mathbf{H_2C=CH_2}$.

Атомы углерода, образующие двойную связь в данных соединениях, находятся в состоянии ${\rm sp}^2$ - гибридизации. На рис.1 представлены модели молекулы этилена.

Модели молекулы этилена

Рис.1 Модели молекулы этилена.

Связь С=С имеет π -связь и σ -связь, поэтому алкены более химически активны, чем алканы. Названия первых девяти алкенов представлены в таблице.

Названия алкенов схожи с названиями алканов, с разницей суффикса. Названия алканов имеют суффикс -<u>ан</u>, а алкенов суффикс -<u>ен</u>. Кроме того, среди перечисленных алкенов отсутствует метен. <u>Метена не существует</u>, потому что метан имеет только один углерод, а для образования двойной связи, обязательно наличие не менее двух углеродных атомов.

Таблица. Названия первых девяти алкенов

Название	Молекулярная	Структурная формула*	
	формула		
Этен	C_2H_4	CH ₂ =CH ₂	
(этилен)			
Пропен	C_3H_6	CH ₂ =CH—CH ₃	
(пропилен)			
Бутен	C_4H_8	СH ₂ =СН—СН ₂ —СН ₃ или (CH ₃ —CH=CH—CH ₃
		бутен-1	бутен -2
Пентен	C_5H_{10}	$CH_2 = CH - (CH_2)_2 - CH_3$	пентен-1
Гексен	C_6H_{12}	$CH_2=CH$ — $(CH_2)_3$ — CH_3	гексен-1
Гептен	C_7H_{16}	$CH_2=CH$ — $(CH_2)_4$ — CH_3	гептен-1
Октен	C_8H_{18}	$CH_2=CH$ — $(CH_2)_5$ — CH_3	октен-1
Нонен	C_9H_{20}	$CH_2=CH$ — $(CH_2)_6$ — CH_3	нонен-1

Лецен	C10H22	CH ₂ =CH—(CH ₂) ₂ —CH ₂	лепен-1
Доцоп	C_{10} 122		децен

^{*} начиная с пентена, в таблице представлена структурная формула одного из возможных изомеров

Местоположение двойной связи обозначается цифрой.

Например,

бутен–1:
$$C^1H_2=C^2H-C^3H_2-C^4H_3$$
 или бутен–2: $C^1H_3-C^2H=C^3H-C^4H_3$.

Изомерия

Для алкенов характерна структурная и пространственная изомерия.

Структурная изомерия для алкенов — это изомерия углеродного скелета, изомерия по положению кратной связи и межклассовая изомерия.

<u>Структурные изомеры</u> - это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.

<u>Изомеры углеродного скелета</u> отличаются строением углеродного скелета.

Например, изомеры с различным углеродным скелетом и с формулой C_4H_8 - бутен-1 и метилпропен

$$C^{1}H_{2}=C^{2}H-C^{3}H_{2}-C^{4}H_{3}$$
 $C^{1}H_{2}=C^{2}H-C^{3}H_{3}$ CH_{3} бутен-1 метилпропен

<u>Изомеры с различным положением кратной связи</u> отличаются расположением двойной связи в углеродном скелете.

Например, изомеры по положению двойной связи, которые соответствуют формуле C_4H_8 :

$$C^{1}H_{2}=C^{2}H-C^{3}H_{2}-C^{4}H_{3}$$
 и $C^{1}H_{3}-C^{2}H=C^{3}H-C^{4}H_{3}$ бутен-2

<u>Межклассовые изомеры</u> - это вещества разных классов с различным строением, но одинаковым составом.

Алкены являются межклассовыми изомерами с циклоалканами. Общая формула и алкенов, и циклоалканов - C_nH_{2n} .

Например, межклассовые изомеры с общей формулой C₄H₈:

$$C^1H_2=C^2H-C^3H_2-C^4H_3$$
 и CH_2-CH_2 | CH_2 | CH_2-CH_2 | CH_2-CH_2 | CH_2-CH_2 | CH_2-CH_2 | CH

Пространственная изомерия для алкенов — это цис-трансизомерия и оптическая.

Алкены, которые обладают достаточно большим углеродным скелетом, могут существовать в виде <u>оптических изомеров</u>. В молекуле алкена должен присутствовать *асимметрический атом углерода* (атом углерода, связанный с четырьмя различными заместителями).

<u>Цис-транс-изомерия</u> обусловлена отсутствием вращения по двойной связи у алкенов.

Алкены, имеющие у каждого из двух атомов углерода при двойной связи различные заместители, могут существовать в виде двух изомеров, отличающихся расположением заместителей относительно плоскости π -связи.

Алкены, в которых одинаковые заместители располагаются по одну сторону от плоскости двойной связи, это *цис-изомеры*.

Алкены, в которых одинаковые заместители располагаются по разные стороны от плоскости двойной связи, это *транс-изомеры*.

На рис.2 представлены модели цис-транс-изомеров бутена-2.

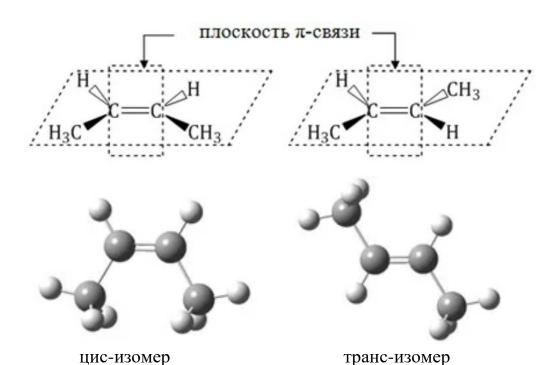


Рис.2. Модели цис-транс-изомеров бутена-2

Номенклатура алкенов

В названиях алкенов для обозначения двойной связи используется суффикс - ен. При этом правила составления названий (номенклатура) для алкенов в целом такие же, как и для алканов, но дополняются некоторыми пунктами:

1. Углеродная цепь, в составе которой есть двойная связь, считается главной.

- 2. Нумеруют атомы углерода в главной цепи так, чтобы атомы углерода при двойной связи получили наименьший номер. Нумерацию следует начинать с более близкого к двойной связи конца цепи.
- 3. Если двойная связь находится на одинаковом расстоянии от концов цепи, то нумерацию начинают с того конца цепи, к которому ближе расположены заместители (радикалы).
- **3**. В конце молекулы вместо суффикса -<u>ан</u> добавляют суффикс <u>-ен</u> и указывают наименьший номер атома углерода при двойной связи в углеродной цепи.
- **4**. Для простейших алкенов применяются также исторически сложившиеся (тривиальные) названия: этен этилен, пропен пропилен, бутен бутилен.

Примеры:
$$1. C^{1}H_{2}=C^{2}H-C^{3}H_{2}-C^{4}H-C^{5}H_{3} \qquad 4-метилпентен-1$$

$$2. C^{8}H_{3}-C^{7}H-C^{6}H_{2}-C^{5}H-C^{4}H=C^{3}H-C^{2}H-C^{1}H_{3} \qquad 2,5,7-триметилоктен-3$$

$$CH_{3} \qquad CH_{3} \qquad CH_{3}$$

$$CH_{3} \qquad CH_{3} \qquad CH_{3}$$

$$3. C^{6}H_{3}-C^{5}H-C^{4}H_{2}=C^{3}H-C^{2}-C^{1}H_{3} \qquad 2,2,5-триметилгексен-3$$

$$CH_{3} \qquad CH_{3} \qquad CH_{3}$$

Химические свойства

Наличие двойной связи между атомами углерода очень сильно меняет свойства углеводородов. Наиболее характерной реакцией для алкенов является реакция *присоединения*. В ходе этой реакции разрывается непрочная π-связь, в результате у обоих атомов углерода, которые соединялись этой связью, появляются «свободные» валентности, за счёт чего и происходит *присоединение*.

1. Галогенирование – присоединение галогенов.

$$CH_2$$
 $=$ CH_2 + Br - Br \rightarrow $[CH_2$ - CH_2] \rightarrow CH_2 - CH_2 «свободные» Br Br валентности этилен (этен) $1,2$ - дибромэтан

Алкены обесцвечивают бромную воду, которая при н.у. имеет желто-оранжевый пвет.

2. Гидрирование – присоединение водорода. В результате этой реакции из алкенов образуются алканы.

$$CH_2$$
= CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 метилпропен метилпропан

3. Γ идратация – присоединение воды H_2O . В результате этой реакции из алкенов образуются спирты.

Данная реакция подчиняется правилу Марковникова В.В., согласно которому соединения типа Н-Х присоединяются по месту разрыва двойной связи так, что при этом атом водорода (вещества Н-Х) присоединяется к атому было больше которого атомов водорода (наиболее углерода, V гидрогенизированный атом углерода).

$$CH_{3}-C \stackrel{\stackrel{\checkmark}{=}}{C}H-CH_{3}+H-OH \rightarrow CH_{3}-C-CH_{2}-CH_{3}$$

$$CH_{3} \qquad CH_{3}$$

метилбутен-2

2-метилбутанол-2

4. Присоединение галогеноводорода – также подчиняется правилу Марковникова. CH_2 С H_2 С H_3 — CH_3 — CH_3

5. Окисление алкенов.

В отличие от алканов, алкены вступают в реакции окисления и при обычных условиях. Так, если этилен пропустить через розовый раствор перманганата калия (КМпО₄), то раствор станет бесцветным.

Реакции мягкого окисления, в которых не разрушается углеродная цепь атомов, обозначается [О], а формула вещества-окислителя записывается под стрелочкой.

$$CH_2 = CH_2 \xrightarrow{[O], H-OH} CH_2 - CH_2$$

 $OH OH$
этилен этиленгликоль (этандиол)

6. Горение алкенов. В отличие от газообразных алканов, пламя которых бесцветно, газообразные алкены горят светящимся (ярким) пламенем.

$$C_4H_8 + 6O_2 \rightarrow 4CO_2 + 4H_2O$$

7. *Полимеризация алкенов*. Алкены легко вступают в реакцию полимеризации. Это процесс, при котором из большого числа молекул (мономеров) образуется одна большая молекула (полимер).

$$n \text{ CH}_2$$
 СН₂ → (−СН₂−СН₂−)_n мономер полимер полиэтилен

Полиэтилен, в отличие от этилена, уже не содержит двойной связи, поэтому он химически инертен, т. е. практически не вступает в химические реакции.

Порядок выполнения работы

Решить задания в соответствии со своим вариантом, дать названия веществам в соответствии с номенклатурой ИЮПАК, составить структурные формулы по названию, составить уравнения реакций.

Критерии оценивания: за правильный ответ в вопросах ставится 1 балл; за неправильный ответ -0 баллов.

Оценка	Кол-во правильных ответов	Кол-во правильных ответов
	в (%)	в баллах
отлично	91-100	10
хорошо	75-90	8-9
удовлетворительно	60-74	6-7
неудовлетворительно	0-59	менее 6

Варианты заданий

Вариант 1.

Для **2-метилгексена-1**:

- а) напишите структурную формулу и составьте структурные формулы:
 - 1. двух изомеров по положению двойной связи,
 - 2. двух изомеров по строению углеродного скелета,
 - 3. одного межклассового изомера;
 - 4. назовите их по номенклатуре ИЮПАК;
- б) составьте уравнения реакций:
 - 5. галогенирования (присоединения Br₂);
 - б. гидрирования;
 - 7. гидратации;
 - 8. присоединения галогеноводорода (HBr);
 - 9. горения;

10. назовите продукты реакций по номенклатуре ИЮПАК.

Вещества в уравнениях реакций (кроме горения) запишите в структурном виде.

Вариант 2.

Для **4,4-диметилпентена-1**:

- а) напишите структурную формулу и составьте структурные формулы:
 - 1. двух изомеров по положению двойной связи,
 - 2. двух изомеров по строению углеродного скелета,
 - 3. одного межклассового изомера;
 - 4. назовите их по номенклатуре ИЮПАК;
- б) составьте уравнения реакций:
 - 5. галогенирования (присоединения Вг₂);
 - 6. гидрирования;
 - 7. гидратации;
 - 8. присоединения галогеноводорода (НВг);
 - 9. горения;

10. назовите продукты реакций по номенклатуре ИЮПАК.

Вещества в уравнениях реакций (кроме горения) запишите в структурном виде.

Практическое занятие №10

Тема: Решение качественных и расчётных задач по теме «Углеводороды».

Время выполнения –90 минут.

Цель:

- 1. Обучающийся должен научиться определять молекулярную формулу углеводородов.
- 2. Определять молекулярные формулы газообразного вещества на основании его плотности и массовых долей элементов в процентах.
- 3. Определять молекулярные формулы вещества по его плотности и массе продуктов сгорания.

Теоретическая часть

Вывод формул органических веществ по общим формулам.

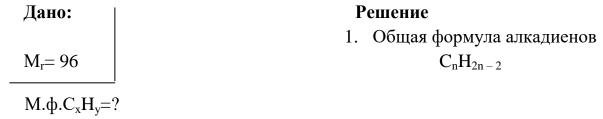
Органические вещества образуют гомологические ряды, которые имеют общие формулы.

Это позволяет:

• выражать молярную массу через число \mathbf{n}

$$M(C_nH_{2n+2}) = 12 \cdot n + 1 \cdot (2n+2) = 14n + 2;$$

- приравнивать молярную массу, выраженную через n, к истинной молярной массе и находить **n**.
- составлять уравнения реакций в общем виде и производить по ним вычисления.


При решении таких задач нужно знать и использовать общие формулы гомологических рядов:

- 1. алканы C_nH_{2n+2}
- 2. алкены и циклоалканы C_nH_{2n}
- 3. алкины и алкадиены C_nH_{2n-2}

Алгоритм решения задачи определение молекулярной формулы углеводородов.

Задача:

Определить молекулярную формулу непредельного углеводорода ряда ацетилена, М_гкоторого равна 96. Назвать его, записать структурную формулу.

2. Выразим через п молекулярную массу

Молярная масса углерода равна 12, а водорода 1 (см. Периодическую таблицу Менделеева)

$$M_r(C_nH_{2n-2}) = 12n + 1 \cdot (2n - 2)$$

 $96 = 12n + 2n - 2$
 $98 = 14n$
 $n = 7$

3. Молекулярная формула C_7H_{12}

Структурная формула $CH \equiv C - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$

Ответ: Молекулярная формула C_7H_{12}

Структурная формула $CH \equiv C - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$

Определение молекулярной формулы газообразного вещества на основании его плотности и массовых долей элементов в процентах.

Задача:

Установить молекулярную формулу углеводорода, в котором массовая доляэлементов углерода составляет 80%, а водорода -20%. (Относительная плотность углеводорода по водороду =15)

Поря	док решения задачи	Решение задачи
1	Внимательно прочти условие задачи и кратко запиши	Дано: W%(С) = 80%
	его.	W%(H) = 20 %
		$ Д(H_2) = 15 $
		Найти: молекулярную формулу
		углеводорода $C_x H_y$
2	Определи атомный фактор, показывающий соотношение атомов в молекуле, разделив массовые доли каждого элемента на их относительные атомные массы.	(C) = $\frac{80}{12}$ = 6,6 (C) = $\frac{W(c)}{Ar(c)}$ (H) = $\frac{20}{12}$ = 20 (H) = $\frac{W(u)}{A(c)}$
	элемента на их относительные атомные массы.	$(11) = \frac{1}{1} = 20 (11) = \frac{1}{Ar(H)}$

3	Усстанови соотношение атомов в молекуле	C:H = 6,6:20 = 1:3
	углеводорода, приведя значение атомных факторов к	
	целым числам.	
4	Напиши простейшую формулу углеводорода и по ней	CH ₃
	рассчитай относительную молекулярную массу.	$M_{r=15}$
5	Определи истинную относительную молекулярную	$M_r = \mathcal{L}(H_2) \cdot M_r(H_2)$
	массу углеводородов($M_{r \text{ ист.}}$)	$M_r = 15 \cdot 2 = 30$
6.	Установи во сколько раз истинная относительная	$\frac{\text{Mr(истинная)}}{\text{Mr(простейшая)}} = 30:15=2$
	молекулярная масса углеводорода больше	Wir (inpocremium)
	относительной молекулярной массы простейшей его	Истинная формула C ₂ H ₆
	формулы.	
7	Запиши ответ	Данный углеводород C ₂ H ₆

Определение молекулярной формулы вещества по его плотности и массе продуктов сгорания. Нахождение молекулярной формулы вещества

Задача:

При сгорании вещества массой 2, 3 грамма образуется оксид углерода массой 4, 4 грамма и вода массой 2, 7 грамма. Относительная плотность паров этого вещества по воздуху — 1,59. Установите молекулярную формулу данного вещества.

Пор	ядок решения задачи	Решение задачи
1	Внимательно прочти условие задачи и кратко	Дано: $m(CO_2) = 4,4 \ \Gamma$
	запиши его.	$m (H_2O) = 2, 7\Gamma$
	Напиши уравнение $C_xH_yO_z$ → CO_2 + H_2O	$m (B-Ba) = 2, 3 \Gamma$
	·	Д(возд.) = 1,59
		H айти: $C_x H_y O_z$
2	Определи массеуглерода, содержащегося в	В 44 г СО ₂ содержится 12 г С, а в 4, 4 г СО ₂
	веществе:	-x г C
	- запиши логическое рассуждение;	$X = \frac{4.4 \cdot 12}{44 \cdot 2} = 1.2 \Gamma$
	- составь на основании логических рассуждений	44 2
	пропорцию и реши ее.	
3	Определи массеводорода, содержащегося в	В 18 г H ₂ Осодержится 2 г H, а в 2,7 г H ₂ O -
	веществе:	ΧΓ
	- запиши логическое рассуждение;	$X = \frac{2.7 e^2 \cdot 22 e}{18 e} = 0, 3 \Gamma$
	- составь на основании логических рассуждений	18 2
	пропорцию и реши ее.	
4	Определи входит ли в состав молекулы кислород	m(O) = m(B-Ba) - m(C) - m(H)
		m(O) = 2, 3 - 1, 2 - 0, 3 = 0.8 r
5	Определи атомный фактор, показывающий	m (O) = 2, 3 – 1, 2 – 0, 3 = 0,8 г (C) = $\frac{1,2}{12}$ = 0,1
	соотношение атомов в молекуле, разделив	12
	найденные массы элементов на относительные	$(H) = \frac{0.3}{1} = 0, 3$
	атомные массы	$(O) = \frac{0.8}{16} = 0,05$
6	Установи соотношение атомов элементов в	C: H: O = 0,1:0, 3:0, 05 = 2:6:1
	молекуле данного вещества, приведя значение	
	атомных факторов к целым числам.	
7	Напиши простейшую формулу вещества и	C_2H_6O
	рассчитай M _r	$M_r(C_2H_6O) = 2*12+6+16 = 46$
8	Определи истинную относительную молярную	M_r = Д(возд.) • M_r возд.
	массу	$M_r = 1,59 \cdot 29 = 46$
		Т.к. совпадают относительные молярные
		массы, то совпадают и простейшие
		формулы вещества.

			Отсюда молекулярная формула данного вещества C_2H_6O
1	7	Запиши ответ	C_2H_6O

Порядок выполнения работы

Решить задания в соответствии со своим вариантом, записать формулы, необходимые для расчетов, подтвердить все выводы подробными расчётами, дать названия веществам в соответствии с номенклатурой ИЮПАК, составить структурные формулы.

Критерии оценивания: за правильный ответ в вопросах ставится 1 балла; за неправильный ответ -0 баллов.

Оценка	Кол-во правильных ответов	Кол-во правильных ответов
	в (%)	в баллах
отлично	91-100	10
хорошо	75-90	8-9
удовлетворительно	60-74	6-7
неудовлетворительно	0-59	менее 6

Варианты заданий

Вариант 1.

- 1. Определить молекулярную формулу предельного углеводорода, М_гкоторого равна 86. Назвать его, записать структурную формулу.
- 2. Найдите формулу этана, если относительная плотность его по водороду равна 15, а массовая доля углерода 80 %, водорода 20 %.
- 3. При сжигании газообразного углеводорода образовалось 6,6 г CO_2 и 3,15 г H_2O . Плотность его по воздуху составляет 2. Определить молекулярную формулу вещества.
- 4. Определить молекулярную формулу непредельного углеводорода ряда алкенов, M_r которого равна 112. Назвать его, записать структурную формулу.
- 5. Органическое соединение имеет молекулярную массу 46. Состав его: С -26,21 %, H -4,35 % и O-69,44 %. Вывести молекулярную формулу.

Вариант 2.

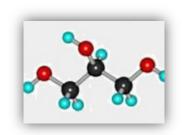
- 1. Определить молекулярную формулу непредельного углеводорода ряда ацетилена (алкины), M_r которого равна 54. Назвать его, записать структурную формулу.
- 2. Состав углеводорода: С -85,7 % и Н 14,3 %. Плотность его по воздуху равна 1,5. Вывести его молекулярную формулу.
- 3. При сжигании вещества массой 0,92 г, состоящей из углерода и водорода, получили СО₂массой 3,08 г и H₂O массой 0,72 г. Плотность этого вещества по водороду равна 39. Определить молекулярную формулу вещества.

- 4. Ненасыщенный углеводород состав: С 85,7 % и Н 14,3 %. Плотность его по воздуху 0,98. Вывести молекулярную формулу вещества.
- 5. При полном сгорании 1,45 г органического вещества получено 1,12 л CO_2 и 0,9 г H_2O . Плотность пара этого вещества по водороду равна 15. Выведите молекулярную формулу вещества.

Практическое занятие № 11

Тема: Изучение свойств многоатомных спиртов на примере глицерина. Растворение глицерина в воде. Качественная реакция с гидроксидом меди (II). Доказательство непредельного характера жидкого жира.

Время выполнения –90 минут.

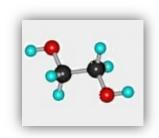

Цель:

- 1. Познакомиться со свойствами глицерина. Научиться определять его с помощью качественной реакции среди других органических веществ.
- 2. Ознакомиться с растворимостью жиров в воде и органических растворителях.

Доказать, что в состав растительного масла входят остатки непредельных кислот.

Теоретическая часть

Глицерины (триолы)



Глицерин $(C_3H_5OH)_3$ — простейший представитель трехатомных предельных спиртов - *глицеринов*.

Глицерин — бесцветная, вязкая, сиропообразная жидкость, сладкая на вкус. **Не ядовит.** Глицерин не имеет запаха, его $t_{\text{пл}} = 18^{0}\text{C}$, $t_{\text{кип}} = 290^{0}\text{C}$. Глицерин гигроскопичен, хорошо смешивается с водой и этанолом. На этом свойстве основано применение глицерина в косметической промышленности, где глицерин используется для увлажнения кожи. Абсолютно чистый безводный глицерин затвердевает при $+18^{0}\text{C}$, но получить его в твердом виде чрезвычайно сложно. Глицерин широко распространен в живой природе. Он играет важную роль в процессах обмена в организмах животных, входит в состав большинства липидов — жиров и других веществ, содержащихся в животных и растительных тканях и выполняющих в живых организмах важнейшие функции. Благодаря этим свойствам глицерин является важным компонентов многих пищевых продуктов, кремов, косметических средств.

Гликоли (диолы)

Общая формула ряда гликолей $C_nH_{2n}(OH)_2$.

Название гликоли получили вследствие сладкого вкуса многих представителей ряда (греч. «гликос» — сладкий).

Этиленгликоль $C_2H_4(OH)_2$ — представитель предельных двухатомных спиртов - *гликолей*.

Этиленгликоль и глицерин, благодаря наличию гидроксильных групп, могут образовывать водородные связи с молекулами воды, этим объясняется их не ограниченная растворимость в воде.

Многоатомные спирты по химическим свойствам сходны с одноатомными спиртами. Однако в химических свойствах многоатомных спиртов есть особенности, обусловленные присутствием в молекуле двух и более гидроксильных групп.

Многоатомные спирты с ОН-группами у соседних атомов углерода (этиленгликоль, глицерин и т.п.) вследствие взаимного влияния атомов взаимодействуют не только с активными щелочными металлами, но и с водными растворами их гидроксидов с образованием солей — <u>гликолятов</u>, <u>глицератов</u>.

$$HO-CH_2-CH_2-OH + 2NaOH \rightarrow NaO-CH_2-CH_2-ONa + 2H_2O$$

При взаимодействии многоатомного спирта с гидроксидом меди (II) в щелочной среде образуется темно-синий раствор (гликолят меди и глицерат меди). Эта реакция является качественной реакцией на многоатомные спирты.

Упрощенная схема:

$$CH_2-OH$$
 CH_2-O CH_2-OH CH_2-OH CH_2-OH CH_2-OH CH_2-OH

Многоатомные спирты взаимодействуют с органическими и неорганическими кислотами с образованием сложных эфиров.

С карбоновыми кислотами глицерин образует сложные эфиры – жиры и масла.

При взаимодействии глицерина с азотной кислотой в присутствии концентрированной серной кислоты образуется нитроглицерин (тринитрат глицерина):

$$CH_2-CH-CH_2 + 3HONO_2 \xrightarrow{H_2SO_4} CH_2-CH-CH_2 + 3H_2O$$
 OH OH OH . O O O Глицерин $NO_2 NO_2 NO_2$ Тринитрат глицерина (нитроглицерин)

Порядок выполнения работы.

Критерии оценивания: в соответствии с критериями оценки экспериментальных умений. Оценка ставится на основании наблюдения за обучающимися в процессе работы и проверки письменного отчета.

Оборудование и реактивы: штатив с пробирками, растворы: $CuSO_4$, NaOH, глицерин, вода, спирт, бензин, растительное масло, фильтрованная бумага, раствор марганцовки – $KMnO_4$.

І. Изучение свойств глицерина.

Опыт 1. Растворимость глицерина в воде.

К 1 мл воды в пробирке (1 мл p-pa = 1 см) прилейте 1 мл глицерина и смесь взболтайте. Затем добавьте еще 1 мл глицерина и еще раз взболтайте смесь. Что можно сказать о растворимости глицерина в воде?

Опыт 2. Качественная реакция на глицерин.

К 2 мл p-ра щелочи NaOH в пробирке прилейте несколько капель p-ра медного купороса (сульфат меди (II)). Что наблюдаете? К полученному осадку прибавьте по каплям глицерин и смесь взболтайте.

Задание: Запишите наблюдения, уравнения реакции и выводы в таблицу (см. отчет по работе).

II. Изучение свойств жиров.

Опыт 1. В три пробирки налейте по 1 мл (1 см) воды, спирта и бензина и добавьте в них по 2-3 капли подсолнечного масла. Встряхните содержимое пробирок. В какой жидкости жиры растворяются лучше?

Оформите наблюдения в таблице.

Опыт 2. Несколько капель p-pa жира в спирте и бензине нанесите на фильтровальную бумагу. Что наблюдаете после испарения растворителя?

Опыт 3. Практически докажите, что в состав выданного вам растительного жира входят остатки непредельных кислот. Для этого, к раствору жира добавьте p-p KMnO₄. Что наблюдаете?

Почему происходит обесцвечивание марганцовки? Какие карбоновые кислоты входят в состав растительных жиров? Какие связи она содержат?

Оформление отчета

- 1. Тема
- 2. Цель
- 3. Оборудование и реактивы
- 4. Оформить отчет в таблице:

Что делали	Что наблюдали (рис.)	Уравнения реакций	Выводы
I. Изучени		не свойств глицерина	

Опыт 1.			
Опыт 2.		1) NaOH + CuSO ₄ \rightarrow	
		изб.	
		2) CH ₂ – OH OH	
		CH – OH + Cu →	
		$CH_2 - OH$ OH	
		\rightarrow	
	II.Изучени	е свойств жиров	
Опыт 1.			
И т.д.			

5. Сделать общий вывод по работе в соответствии с целями работы.

Практическое занятие № 12

Тема: Изучение свойств карбоновых кислот на примере уксусной кислоты. Общие свойства с минеральными кислотами. Реакция этерификации

Время выполнения –90 минут.

Цель:

- 1. Изучить свойства карбоновых кислот на примере уксусной кислоты.
- 2. Проделать реакции, подтверждающие качественный состав органических кислот.
- 3. Научиться решать экспериментальные задачи, связанные с наблюдением и объяснением происходящих явлений.

Теоретическая часть

Уксусная кислота относится к классу карбоновых кислот, имеющих общую формулу R–C, как все минеральные кислоты она растворяется в воде. Но степени электролитической диссоциации это слабый электролит. В водном растворе карбоновые кислоты диссоциируют на катионы H^+ и анионы кислотного остатка $RCOO^-$;

$$R$$
-COOH= R -COO $^{-}$ + H^{+} ацетат ион

Как все минеральные кислоты, она изменяет цвет индикаторов: с/л, м/о, ун/инд. Уксусная кислота взаимодействует с металлами, основными оксидами, основаниями и солями. Соли уксусной кислоты называются – ацетаты.

В отличие от минеральных кислот уксусная кислота имеет особенности. Как все карбоновые кислоты она вступает в реакцию этерификации со спиртами, с образованием сложных эфиров; условия этерификации; t° и к. H_2SO_4 .

Реакция этерификации:

$$R$$
-COOH + R -OH------ H_2O + R -C

карб. к-ты спирт сл.эфир

Хлорид железа (III) FeCl₃ является реактивом на соли уксусной кислоты.

Порядок выполнения работы.

Критерии оценивания: в соответствии с критериями оценки экспериментальных умений. Оценка ставится на основании наблюдения за обучающимися в процессе работы и проверки письменного отчета.

Оборудование и реактивы: штатив с пробирками, спиртовка, спички, держатель для пробирок, стакан с водой, p-p уксусной кислоты CH_3COOH , p-p K_2CO_3 , NaOH, FeCl₃, фенолфталеин (ϕ/ϕ), синий лакмус (c/π), Zn (гранулы), магниевые стружки, кусочки меди – Cu, CuO(гранулы).

Опыт 1. Доказательство наличия иона H^+ в уксусной кислоте. <u>Качественная реакция на кислоты.</u>

В пробирки с р-ром кислоты добавить с/л. Что наблюдали? Написать уравнение электролитической диссоциации уксусной кислоты. Отметить рНсреды и ее кислотность. Какие тоны изменяют цвет индикатора?

Опыт 2. <u>Исследование химических свойств уксусной кислоты</u>
Взаимодействие (в/д) CH₃COOH с металлами.

В три пробирки налейте по 1 мл p-ра уксусной кислоты CH_3COOH . В одну из них всыпьте немного магниевых стружек, во вторую несколько гранул цинка, в третью — меди — Cu.

В 1-ой пробирке происходит бурная реакция, во 2-ой пробирке реакция протекает спокойно (если не наблюдаете никаких изменений, пробирку слегка нагрейте на пламени спиртовки). В 3-ей пробирке – нет изменений. Почему с разными металлами уксусная кислота реагирует по-разному?

а) в/д СН₃СООН с основными оксидами.

В 4-уюпробирку добавьте немного оксида меди (II). Для ускорения реакции пробирку слегка нагрейте. Что происходит?

б) в/д СН₃СООН с основаниями.

В пробирку налейте 1 мл p-pa NaOH и добавьте несколько капель p-pa ф/фили индикаторную бумажку. Появляется малиновая окраска. Постепенно по каплям добавляйте в пробирку p-p уксусной кислоты CH₃COOH и встряхивайте пробирку. Происходит обесцвечивание p-pa. Почему?

в) в/д уксусной кислоты с солями.

В пробирку к 1 мл CH_3COOH добавить p-p K_2CO_3 . Что наблюдали? Отметьте тип химической реакции.

 $CH_3COOH + K_2CO_3 \rightarrow CH_3COOH + H_2O + CO_2$

ацетат калия

Опыт 3. Качественная реакция на уксусной кислоту.

В пробирку с р-ром, полученным при действии уксусной кислоты на щелочь (опыт 2 (в)), прибавьте 2-3 капли хлорида железа (III) и отметьте изменение окраски.

Запомните!

<u>Хлорид железа (III) FeCl₃ является реактивом на соли уксусной кислоты.</u> Задание:

- 1. Напишите уравнение эл. диссоциации p-pa CH₃COOH, а также молекулярные и ионные уравнения реакций между:
- а) уксусной кислотой и металлами: (MguZn) сделать вывод о скорости реакции.
- б) укс. кислотой и оксидом меди (II).
- в) укс. кислотой и карбонатом натрия.

Особенности свойств CH_3COOH : p-ция этерификации. Написать уравнение реакции между уксусной кислотой (CH_3COOH) и этиловым спиртом (C_2H_5OH). Назвать вещества.

Составление отчета

- 1. Тема
- 2. Цель
- 3. Оборудование и реактивы
- 4. Оформить отчет в таблице

Что делали	Что наблюдали (рис.)	Уравнения реакций	Выводы
Опыт 1.		$[H]^+ > [OH]^-$	
		рН< 7, среда	
И т.д.			

Общий вывод (по цели).

3.1.2. Самостоятельная работа Самостоятельная работа №1

Тест

Атом - сложная частица

Критерии оценивания: за правильный ответ в вопросах ставится 1 балл; за неправильный ответ -0 баллов.

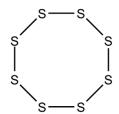
Оценка	Кол-во правильных ответов	Кол-во правильных ответов	
	в (%)	в баллах	

отлично	91-100	10
хорошо	75-90	8-9
удовлетворительно	60-74	6-7
неудовлетворительно	0-59	менее 6

Задание 1

Bonpoc:

Больше электронов, чем протонов содержит частица, символ которой:


Выберите один из 4 вариантов ответа:

- 1) C⁴⁻
- 2) $A1^{3+}$
- 3) O^{2+}
- 4) ¹⁸₈O

Задание 2

Bonpoc:

В молекуле S_x содержится 96 электронов. Укажите значение x.

Запишите число: _____

Задание 3

Bonpoc:

Чем различаются между собой нуклиды 3 H и 1 H?

Выберите несколько из 4 вариантов ответа:

- 1) числом нейтронов
- 2) протонным числом
- 3) числом электронов
- 4) массой

Задание 4

Bonpoc:

Укажите символы частиц, входящих в состав ядра:

Выберите несколько из 4 вариантов ответа:

1) ē

2) p

3) a

4) n

Задание 5

Bonpoc:

Один из нуклидов кремния содержит 14 нейтронов, массовое число этого нуклида равно:

Выберите один а	из 4 вариантов оп	пвета:		
1) 28	2) 36	3) 29	4) 49	
<u>Задание 6</u>				
Bonpoc:				
В электронейтра	льном атоме числ	ю протонов всегда ра	вно:	
Выберите неско	лько из 4 вариант	ов ответа:		
1) сумме чисел н	нейтронов и элект	ронов		
2) числу нейтрон	НОВ			
3) числу электро	НОВ			
4) порядковому	номеру элемента	в Периодической сис	геме	
<u>Задание 7</u>				
Bonpoc:				
Укажите символ самой тяжёлой частицы:				
Выберите один из 4 вариантов ответа:				
1) p				
2) D				
3) T				
4) ē				
<u>Задание 8</u>				
Bonpoc:				
Запишите сумму всех элементарных частиц в нуклиде ³⁹ Ar.				
18: Ar 2,8,8				
Запишите число	·:			
<u>Задание 9</u>				
Bonpoc:				
Массовая доля атомов водорода наибольшая в составе молекулы, формула				
которой:				
Выберите один	из 4 вариантов оп	пвета:		
1) H ₂ O				
2) H2O2				
3) T ₂ O				
4) D ₂ O				
<u>Задание 10</u>				
Bonpoc:				
Заряд ядра определяется числом:				
Выберите один	из 4 вариантов оп	пвета:		
1) нейтронов	2) πr	отонов и электронов		

4) протонов

Самостоятельная работа № 2

Тест Химическая связь

Критерии оценивания: за правильный ответ в вопросах ставится 1 балл; за неправильный ответ -0 баллов.

Оценка	Кол-во правильных ответов	Кол-во правильных ответов
	в (%)	в баллах
отлично	91-100	10
хорошо	75-90	8-9
удовлетворительно	60-74	6-7
неудовлетворительно	0-59	менее 6

1. Химическая связь, образующаяся только за счет перекрывания электронных орбиталей взаимодействующих атомов, называется:

- 1) ионная
- 2) ковалентная
- 3) металлическая
- 4) водородная

2. Валентными электронами у большинства д-элементов являются

- 1) s- и р-электроны
- 2) p- и d-электроны
- 3) s- и d-электроны
- 4) р- и f-электроны

3. Ионная химическая связь является связью

- 1) направленной 2) ненаправленной 3) насыщаемой 4) слабой
- 4. При взаимодействии $NH_3 + H^+ \rightarrow NH_4^+$ между частицами возникает
- 1) ионная связь
- 2) ковалентная неполярная связь
- 3) ковалентная связь, образованная по обменному механизму
- 4) ковалентная связь, образованная по донорно-акцепторному механизму

5. Вещества, в молекулах которых имеются только ковалентные полярные связи:

- 1) MgO, N_2 , $Ca_3(PO_4)_2$
- 2) SiO₂, NaOH, HgO
- 3) NH_3 , CO_2 , HF
- 4) NaF, H₂S, P₄O₁₀

6. Валентность атома – это

- 1) способность атомов образовывать определенное количество химических связей
- 2) степень окисления атома
- 3) число отданных или принятых электронов
- 4) число электронов, недостающее для получения электронной конфигурации ближайшего инертного газа

7. Энергией связи называется:

- 1) энергия, необходимая для перехода электрона на более высокий энергетический уровень
- 2) энергия, необходимая для разрыва связи
- 3) энергия, необходимая для образования связи

- 4) энергия, необходимая для взаимодействия электронов
- 8.Ковалентные связи обычно образуются:
- 1) между атомами двух неметаллов
- 2) между атомами типичного металла и типичного неметалла
- 3) между атомами в молекулах только газообразных веществ
- 4) между атомами двух металлов
- 9. К характеристикам ковалентной связи относится:
- а) направленность, насыщаемость
- б) поляризуемость, ненаправленность
- в) длина связи, ненасыщаемость
- г) неполяризуемость, энергия связи
- 10. Какая пара указанных элементов при химическом взаимодействии имеет максимальную тенденцию образовывать соединения с ионной связью:
- 1) медь и алюминий
- 2) углерод и хлор
- 3) литий и хлор
- 4) азот и водород

Самостоятельная работа № 3 Окислительно-восстановительные реакции (ОВР)

Окислительно-восстановительные реакции – это реакции, протекающие с изменением степени окисления элементов.

<u>Степенью окисления (С.О.)</u> называется формальный заряд, который атом или группа атомов приобретает в результате передачи электронов, при условии, что при образовании химической связи электроны полностью переходят от одного атома к другому.

Нахождение С.О. элементов в веществе.

Простых веществ равна 0 (Ca 0 ,H $_2^0$, O $_2^0$)

Сумма С.О. всех элементов равна 0.

Например,

$$K^{+} Mn^{x} O_{4}^{-2}$$
 $K_{2}^{+} S^{x} O_{3}^{-2}$
 $1 + X - 8 = 0$ $2 + X - 6 = 0$
 $X = 7$ $X = 4$
 $K^{+} Mn^{+7} O_{4}^{-2}$ $K_{2}^{+} S^{+4} O_{3}^{-2}$

<u>Окисление</u> – процесс отдачи электронов при этом С.О. элементов повышается.

<u>Восстановление</u> – процесс принятия электронов, при этом С.О. элементов понижается.

Окислитель – принимает электроны (восстанавливается).

$$2O^{-2} + 2\bar{e} \rightarrow O_2^{0}$$

Восстановитель – отдает электроны (окисляется).

$$\overline{\operatorname{Ca}^0 - 2e^{-} \operatorname{Ca}^{+2}}$$

Число отданных электронов равно числу принятых (электронный баланс) <u>Классификация ОВР</u>

Межмолекулярные	Внутримолекулярные	Реакции
		диспропорционирования
Окислитель и	Окислитель и восстановитель	Степень окисления одного и
восстановитель находятся	находятся в одном веществе	того же элемента
в разных веществах		одновременно уменьшается и
		увеличивается
t^0	t^0	t^0
$2\text{Fe}^0 + 3\text{Cl}_2^0 \rightarrow 2\text{FeCl}_3$	$2 \text{ Na}^{+}\text{N}^{+5}\text{O}_{3}^{-2} \rightarrow 2 \text{ Na}^{+}\text{N}^{+3}\text{O}_{2}^{-2} + \text{O}_{2}$	$3 \text{ Cl}_2^0 + 3 \text{ H}_2^{+1} \text{O}^{-2} \rightarrow$
$Fe^0 - 3 e^{-} \rightarrow Fe^{+3}$ 2	$N^{+5} + 2 e^{-} \rightarrow N^{+3} $ 2	$\rightarrow H^{+1}Cl^{+5}O_3^{-2} + 5H^{+1}Cl^{-1}$
$Cl_2^0 + 2 e \rightarrow 2 Cl^{-1}$ 3	$ \mathbf{N} + 2\mathbf{e} \rightarrow \mathbf{N} \mathbf{E} $	$Cl^0 - 5 \overline{e} \rightarrow Cl^{+5}$ 1
	$20^{-2} - 4 e \rightarrow O_2^0$ 1	$Cl^0 + 1 \stackrel{-}{e} \rightarrow Cl^{+1}$ 5
	_	

Критерии оценивания:

- 1. правильно выполнены все 4 реакции «отлично»
- 2. правильно выполнены 3 из 4 реакций «хорошо»
- 3. правильно выполнены 2 из 4 реакций «удовлетворительно»
- 4. правильно выполнены менее 2 из 4 реакций «неудовлетворительно»

Вариант №1

Задание:

Окислительно-восстановительные реакции решите методом электронного баланса. Укажите процессы окисления и восстановления, окислитель и восстановитель, продукты окисления и восстановления.

- 1. $HClO + H_2S \rightarrow HCl + H_2SO_4$
- 2. $I_2 + HNO_3 \rightarrow HIO_3 + NO + H_2O$
- 3. $SO_2 + SeO_2 + H_2O \rightarrow Se + H_2SO_4$

Вариант №2

Задание:

Окислительно-восстановительные реакции решите методом электронного баланса. Укажите процессы окисления и восстановления, окислитель и восстановитель, продукты окисления и восстановления.

- 1. $NH_3 + SeO_2 \rightarrow N_2 + Se + H_2O$
- 2. $S + HNO_3 \rightarrow H_2SO_4 + NO_2 + H_2O$
- 3. $Fe_2(SO_4)_3 + KI \rightarrow I_2 + FeSO_4 + K_2SO_4$
- 4. $NaI + PbO_2 + H_2SO_4 \rightarrow Na_2SO_4 + PbSO_4 + I_2 + H_2O$

Самостоятельная работа №4 Дисперсные системы.

Критерии оценивания

<u> </u>		
Оценка	Кол-во правильных ответов	Кол-во правильных ответов
	в (%)	в баллах
отлично	91-100	10-11
хорошо	75-90	8-9
удовлетворительно	60-74	6-7
неудовлетворительно	0-59	менее 6

Тест Вариант №1

1. Соотнесите: (5 баллов)

тип системы	дисперсионная среда / дисперсная фаза
1) эмульсия	а)жидкость/жидкость
2) суспензия	б) жидкость / газ
3) пена	в) газ / жидкость
4) дым	
5) туман	г) газ / твердое вещество
, •	д) жидкость / твердое вещество

- 2. Расположите двухкомпонентные системы в порядке уменьшения размера частиц дисперсной фазы: (1 балл)
 - 1) коллоидный раствор
 - 2) взвесь
 - 3) истинный раствор:

Варианты ответа:

- a) 1,3, 2
- б) 2,1,3

в) 3,2,1

- Γ) 3,1,2
- **3.** Золь с жидкой дисперсной средой представляет собой распределение мельчайших частиц: (1 балл)

Варианты ответа:

а) жидкости в твердом веществе

б) твердого вещества в газе

в) твердого вещества в жидкости

в) газа в жидкости

4. Взвесями называют: (1 балл)

Варианты ответа:

- а) грубодисперсные системы растворы
- б) тонкодисперсные системы
- в) истинные

5. Коагуляцией называют: (1 балл)

Варианты ответа:

- а) рассеяние светового луча частицами коллоидного раствора
- б) выделение воды за счет расслаивания геля
- в) образование коллоидного раствора из грубодисперсной системы
- г) слипание частиц коллоидного раствора.
- 6. Уксусная кислота в воде образует раствор: (1 балл)

Варианты ответа:

- а) молекулярный
- б) ионно-молекулярный
- в) ионный
- г) нет верного ответа.
- 7. Оседание частиц дисперсной фазы называют: (1 балл)

Варианты ответа:

- а) полимеризация
- б) седиментация
- в) коагуляция
- г) нет верного ответа

Вариант № 2

1. Соотнесите: (3 балла)

COOTHECHTE. (5 DATITA	
понятие	определение
1) коллоидный раствор 2) истинный раствор 3) взвесь	а) гомогенная система, состоящая из частиц растворенного вещества, растворителя и продуктов их взаимодействия б) гетерогенная система, в которой частицы одного вещества (1 <r<100 (r="" в="" в)="" вещества="" гетерогенная="" другого="" которой="" нм)="" объёме="" одного="" равномерно="" распределены="" система,="" частицы="">100 нм) равномерно распределены в объёме другого</r<100>
	oobeme apyroro

2. Соотнесите: (3 балла)

тип дисперсной системы	размер частиц
1) грубодисперсная	а) меньше или равно 10 ⁻⁹ м
2) тонкодисперсная	\circ $10^{-7} - 10^{-9} \text{ M}$
3) молекулярно-дисперсная	в) больше 10 ⁻⁷ м

3. Эмульсия представляет собой распределение мельчайших частиц: (1 балл) Варианты ответа:

- а) жидкости в другой жидкости, не смешивающейся с первой
- б) твердого вещества в жидкости
- в) жидкости в газообразном веществе
- г) газообразного вещества в жидкости
- 4. Золи относят: (1 балл)

Варианты ответа:

- а) к грубодисперсным системам
- б) к коллоидным растворам
- в) к истинным растворам
- г) верного ответа среди перечисленных нет
- 5. Эффектом Тиндаля называется: (1 балл)

Варианты ответа:

- а) рассеяние луча света частицами коллоидного раствора
- б) выделение воды за счет расслаивания геля
- в) образование коллоидного раствора из грубодисперсной системы
- г) слипание частиц коллоидного раствора и выделение их в осадок.
- 6. Глюкоза в воде образует раствор: (1 балл)

Варианты ответа:

- а) молекулярный б) ионно-м
- б) ионно-молекулярный
- в) ионный
- г) верного ответа среди перечисленных нет.
- 7. Процесс слипания коллоидных частиц и выпадение их в осадок называют: (1 балл)

Варианты ответа:

а) полимеризация б) коагуляция в) седиментация г) нет верного ответа

3.1.3. Исследовательская работа

Перечень тем индивидуальных проектов (рефератов)

- 1. Биотехнология и генная инженерия технологии XXI века.
- 2. Нанотехнология как приоритетное направление развития науки и производства в Российской Федерации.
 - 3. Современные методы обеззараживания воды.
 - 4. Аллотропия металлов.
 - 5. Жизнь и деятельность Д. И. Менделеева.
 - 6. «Периодическому закону будущее не грозит разрушением...»
 - 7. Использование радиоактивных изотопов в технических целях.
 - 8. Рентгеновское излучение и его использование в технике.
 - 9. Аморфные вещества в природе, технике, быту.
- 10. Охрана окружающей среды от химического загрязнения. Количественные характеристики загрязнения окружающей среды.
 - 11. Применение твердого и газообразного оксида углерода (IV).
 - 12. Защита озонового экрана от химического загрязнения.
- 13. Грубодисперсные системы, их классификация и использование в профессиональной деятельности.
 - 14. Косметические гели.
 - 15. Вода как реагент и среда для химического процесса.
 - 16. Устранение жесткости воды на промышленных предприятиях.
 - 17. Серная кислота «хлеб химической промышленности».
 - 18. Поваренная соль как химическое сырье.
 - 19. Многоликий карбонат кальция: в природе, в промышленности, в быту.
 - 20. Виртуальное моделирование химических процессов.
 - 21. Электролиз растворов электролитов.
 - 22. Электролиз расплавов электролитов.
- 23. Практическое применение электролиза: рафинирование, гальванопластика, гальваностегия.
 - 24. История получения и производства алюминия.
 - 25. Электролитическое получение и рафинирование меди.
- 26. Роль металлов в истории человеческой цивилизации. История отечественной черной металлургии. Современное металлургическое производство.
- 27. История отечественной цветной металлургии. Роль металлов и сплавов в научно-техническом прогрессе.
 - 28. Коррозия металлов и способы защиты от коррозии.
 - 29. История шведской спички.
 - 30. История возникновения и развития органической химии.
 - 31. Жизнь и деятельность А. М. Бутлерова.

- 32. Роль отечественных ученых в становлении и развитии мировой органической химии.
 - 33. Современные представления о теории химического строения.
 - 34. Экологические аспекты использования углеводородного сырья.
- 35. Экономические аспекты международного сотрудничества по использованию углеводородного сырья.
- 36. История открытия и разработки газовых и нефтяных месторождений в Российской Федерации.
 - 37. Химия углеводородного сырья и моя будущая профессия.
 - 38. Углеводородное топливо, его виды и назначение.
 - 39. Синтетические каучуки: история, многообразие и перспективы.
- 40. Резинотехническое производство и его роль в научно-техническом прогрессе.
 - 41. Сварочное производство и роль химии углеводородов в нем.
- 42. Нефть и ее транспортировка как основа взаимовыгодного международного сотрудничества.

Показатели, критерии и шкала оценивания письменной работы

Наименование показателя	Критерии оценки	0	1	2
І. КАЧЕСТ	ГВО ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЫ (РЕФЕРАТА	, ПРОЕ	KTA)	
Соответствие содержания работы заданию, степень раскрытия темы. Обоснованность и доказательность выводов	- соответствие содержания теме и плану реферата; - умение работать с литературой, систематизировать и структурировать материал; - умение обобщать, сопоставлять различные точки зрения по рассматриваемому вопросу, аргументировать основные положения и выводы; - уровень владения тематикой и научное значение исследуемого вопроса; - наличие авторской позиции, самостоятельность			
выводов	-наличие авторской позиции, самостоятельность суждений.			
Грамотность изложения и качество оформления работы	 правильное оформление ссылок на используемую литературу; грамотность и культура изложения; владение терминологией и понятийным аппаратом проблемы; соблюдение требований к объему реферата; отсутствие орфографических и синтаксических ошибок, стилистических погрешностей; научный стиль изложения. 			
Самостоятельност ь выполнения работы, глубина проработки материала, использование	- степень знакомства автора работы с актуальным состоянием изучаемой проблематики; - полнота цитирования источников, степень использования в работе результатов исследований и установленных научных фактов дополнительные знания, использованные при			

рекомендованной	написании работы, которые получены помимо		
и справочной	предложенной образовательной программы;		
литературы	- новизна поданного материала и рассмотренной		
литературы	проблемы		
	Общая оценка за выполнение		
	II. КАЧЕСТВО ЗАЩИТЫ ДОКЛАДА		
	- соответствие содержания сформулированной		
	теме, цели, гипотезе и поставленным задачам		
Соотрототрую	исследования;		
Соответствие	– аргументированность и доказательность в		
содержания	изложении материала, подразумевающая		
доклада	использование современных методов		
содержанию	исследования, наличие достаточного фактического		
работы	материала, его логическую обработку;		
	- степень раскрытия темы (тема не раскрыта,		
	раскрыта частично, раскрыта полностью)		
Выделение	– автор владеет базовым аппаратом;	 	
основной мысли	использованы общенаучные и специальные		
работы	термины;		
	 показано владение специальным аппаратом; 		
	– наличие вывода, но он не доказан;		
	– выводы нечеткие;		
	 выводы полностью характеризуют работу 		
Качество	TOWNS THE STATE OF		
изложения	– докладчик зачитывает доклад;		
материала.	- докладчик рассказывает, но не объясняет суть		
Правильность и	работы;		
точность речи во	 доклад четко выстроен; 		
время защиты	 докладчик хорошо излагает материал; 		
реферата	 доклад производит очень хорошее впечатление 		
	Общая оценка за доклад		
	III. ОЦЕНКА ПРЕЗЕНТАЦИИ		
	количество слайдов;		
Дизайн и	 объем текста на слайде; 		
оформление	 отсутствие ошибок и опечаток в тексте; 		
слайдов	 один и тот же шаблон оформления слайда; 		
	 четкое изображение иллюстраций 		
Слайды	 логическая последовательность слайдов 		
представлены в	основному тексту выступления;		
логической	 таблицы, схемы, графики соответствуют 		
последовательност	содержанию		
И	-		
Использование	– выделение значимой информации цветом,		
дополнительных	эффектом анимации;		
эффектов	- звуковое сопровождение, дополняющее		
PowerPoint (смена	представленную информацию;		
слайдов, звук, графики)	 наличие авторского изобразительного приема 		
трафики)	Общая опаше за предопречина		
	Общая оценка за презентацию		

IV. ОТВЕТЫ НА ДОПОЛНИТЕЛЬНЫЕ ВОПРОСЫ ПО СОДЕРЖАНИЮ РАБОТЫ				
Вопрос 1	 готовность к дискуссии; наличие собственной позиции, умение ее отстаивать; полнота ответов на вопросы 			
Вопрос 2				
Общая оценка за ответы на вопросы				
	ИТОГОВАЯ ОЦЕНКА ЗА ЗАЩИТУ			

Шкала оценивания:

- 0 содержание реферата не удовлетворяет данному критерию
- 1 содержание реферата частично удовлетворяет данному критерию
- 2 содержание реферата в полной мере удовлетворяет данному критерию

Оценка «отлично» ставится за получение — 71-80 баллов.

Оценка «хорошо» ставится за получение — 60-70 баллов.

Оценка «удовлетворительно» ставится за получение — 50-59 баллов.

Оценка «неудовлетворительно» ставится за получение менее 50 баллов.

3.2. Задания для проведения промежуточной аттестации

3.2.1. Задания для проведения дифференцированного зачета

Вариант 1

Инструкция для обучающихся

Тест состоит из 26 заданий: 16 заданий с выбором ответа (часть A) и 10 заданий с кратким ответом (часть B). На выполнение теста отводится 60 минут.

Часть А		
К каждому задании части А даны несколько ответов, из которых толы		
верн	ный.	
$N_{\underline{0}}$	Содержание задания	Кол-во
		балов
A1	Тип химической связи в соединении CaCl ₂	1
	1) ионная; 2) ковалентная неполярная; 3) ковалентная	
	полярная.	
A2	Изомерами являются вещества	1
	1) $CH_3 - CH_2 - CH_2 - CH_3$ и $CH_3 - CH = CH - CH_3$;	
	2)CH ₃ – CH ₂ – CH – CH ₃ и CH ₃ – CH – CH ₂ – CH ₃ ;	
	$ m CH_3$ $ m CH_3$	
	3) $CH_3 - CH = CH - CH_3$ и $CH_2 = CH - CH_2 - CH_3$;	
	4) CH ₃ – CH ₂ – CH ₃ и CH ₃ – CH ₂ – CH ₂ – CH ₃	
A3	Какая из предложенных ниже реакций является качественной	1
	на ион Cl ⁻ ?	

	1) NaCl + HNO ₃ \rightarrow 2) AgNO ₃ + NaCl \rightarrow 3) AgCl + HNO ₃ \rightarrow	
A4	Выберите превращение, соответствующее сокращенному	1
	ионному уравнению.	
	$2H^+ + CO_3^2 \longrightarrow H_2O + CO_2 \uparrow$	
	1) $Na_2CO_3 + HCl \rightarrow 2$ $Ba(OH)_2 + Na_2CO_3 \rightarrow 3$ $CaCO_3 + HCl \rightarrow$	
A5	С оксидом кальция взаимодействуют все вещества,	1
	перечисленные в ряду	
	1) H ₂ O; Cu(OH) ₂ ; HCl 2) H ₂ O;SO ₃ ; HCl 3) H ₂ O;CO ₂ ; NaCl	
A6	Установите соответствие:	1
	Химический элемент Электронное семейство	
	1.H $a-f$	
	2. Cu	
	3. Ас в - р	
	3. S $\Gamma - S$	
	1) 1г, 2б, 3a, 4в; 3) 1б, 2в, 3г, 4a;	
	2) 1Γ, 2B, 36, 4a; 4) 16, 2a, 3B, 4Γ	
A7	Какое вещество выделяется на катоде при электролизе	1
	расплава CaCl ₂ ?	
	1) Ca 2) H_2 3) Cl_2 4) O_2	
A8	Число σ - связей в этанале (альдегид)	1
	1) 3 2) 5 3) 6 4) 7	
A9	Иону S^{2-} соответствует электронная формула	1
	1) $1s^22s^22p^6$ 3) $1s^22s^22p^63s^23p^6$	
	1) 1s ² 2s ² 2p ⁶ 3)1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 2) 1s ² 2s ² 2p ⁴ 4) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	
A10	Из приведенных ниже реакций, протекающих в водной среде,	1
	неосуществимой является	
	1) $Zn + CuSO_4 \rightarrow$ 3) $Fe + NiCl_2 \rightarrow$	
	2) $Cu + FeCl_2 \rightarrow$ 4) $Zn + Pb(NO_3)_2 \rightarrow$	
A11	Гомологом пентана является вещество	1
	1) C_6H_{12} 2) C_6H_{10} 3) C_5H_{10} 4) C_4H_{10}	
A12	Продуктом реакции $H_3C - C = CH - CH_3 + HCl \rightarrow$	
	$\dot{\mathrm{CH}}_3$	
	является вещество	1
	Cl	
	1) CH ₃ - C - CH ₂ - CH ₃ 3) CH ₃ - CH - CH ₂ - CH ₂	
	$\dot{\text{CH}}_3$ $\dot{\text{CH}}_3$ $\dot{\text{Cl}}$	
	2) CH ₃ - CH - CH - CH ₃ 4) CH ₃ - CH - CH ₂ - CH ₃	
	ĊH ₃ Ċl ĊH ₂	

	C1	
A13	При взаимодействии 100 г известняка, содержащего 5%	1
	примесей, с соляной кислотой образуется углекислый газ	
	объемом литров.	
	1) 0, 45 2) 21, 28 3) 42, 56	
A14	Одновременно в водном растворе не могут существовать	1
	вещества	
	1) Ca(NO ₃) ₂ и КСl 3) NaCl и Zn(NO ₃) ₂	
	2) Ba(NO ₃) ₂ и Na ₂ SO ₄ 4) K ₂ SO ₄ и NaNO ₃	
A15	При нагревании концентрированной серной кислоты с медью	1
	выделяется газ	
	1) H_2 2) H_2S 3) SO_2 4) O_2	
A16	В водном растворе какого вещества фенолфталеин	1
	приобретает малиновую окраску?	
	1) NaOH 2) H ₂ SO ₄ 3) KCl	

	II D				
-	Часть В				
	При выполнении части В запишите краткий ответ.				
No	Содержание задания	Кол-во			
		балов			
B1	Определите формулу алкена, если плотность его по воздуху	4			
	1, 932. (Запишите цифрами последовательно число атомов				
	углерода и водорода в формуле.)				
B2	Запишите пропущенное слово.	1			
	Высший оксид элемента, атому которого соответствует				
	электронная формула $1s^2 2s^2 2p^6 3s^2 3p^3$ проявляет				
	свойства.				
В3	Укажите коэффициент перед формулой окислителя в	4			
	уравнении реакции				
	Zn+ $HNO_{3 \text{ (KOHII)}} \rightarrow NO_2 +$				
B4	Сумма всех коэффициентов в молекулярном, полном и	3			
	кратких ионных уравнениях реакции между нитратом бария и				
	серной кислотой равна				
B5	Как изменяется сила галогенопроизводных кислот в ряду	1			
	$HF \rightarrow HC1 \rightarrow HBr \rightarrow HJ$?				
B6	Запишите пропущенное слово.	1			
	Химическое равновесие процесса $N_2 + O_2 2 NO-Q$ можно				
	сместить в сторону продукта реакции при				
	температуры.				
B7	Веществом X_4 в предложенной схеме является	4			
	(Запишите название вещества).				
	$+H_2$ $+O_2$ $+NaOH$ $+Pb(NO_3)_2$				
	$S \rightarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \downarrow$				

	Избыток	
B8	Реакцию дегидратации отражает схема	1
	Запишите номер реакции	
	1. $nCH_2 = CH_2 \rightarrow (-CH_2 - CH_2 -)_n$	
	2. $CH_3 - CH_2 - CH_2 - CH_3 \rightarrow CH_2 = CH - CH_2 - CH_3 + H_2$	
	$3. C_2H_5OH \longrightarrow C_2H_4 + H_2O$	
	4. CH_3 - CH = CH_2 + H_2 \rightarrow CH_3 - CH_2 - CH_3	
B9	Соединение содержит по массе 70 % кремния и 30 %	2
	углерода. Степень окисления (без знака) углерода в	
	соединении равна	
B10	В 40 мл 6% раствора нитрата серебра (І) (плотность 1, 05 г/мл)	-
	растворили 250 мл хлороводорода (н.у.). Масса полученного	
	осадка составила г. (Выразите в виде целого	
	числа)	
	Итого:	37

Критерии оценивания

28 - 37 баллов – «отлично»;

19 - 27 баллов – «хорошо»;

С 18 баллов – «удовлетворительно»;

Меньше 17 баллов – «удовлетворительно».

Оформление ответов

Вариант 1

Часть А

$N_{\underline{0}}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
заданий																
Ответ																

Часть В

Вариант 2

Часть А									
Кказ	К каждому задании части А даны несколько ответов, из которых только один								
верн	верный.								
№	Содержание задания	Кол-во							
		балов							
A1	Тип химической связи в соединении HCl	1							

	1) ионная; 2) ковалентная неполярная; 3) ковалентная									
	полярная.									
A2	Изомерами являются вещества	1								
	1) $CH = C - CH_3$ и $CH_2 = CH - CH_3$;									
	2) CH ₃ – CH ₂ – CH ₂ – CH ₃ и CH ₃ – CH – CH ₃ ;									
	$\dot{ ext{CH}}_3$									
	3) $CH_3 - CH_2 - C \equiv CH$ и $CH \equiv C - CH_2 - CH_3$;									
	4) $CH_2 = CH - CH_2 - CH_3$ и $CH_2 = CH - CH_2 - CH_2 - CH_3$									
A3	Какая из предложенных ниже реакций является качественной	1								
	на ион Ba^{2+} ?									
	1) $BaCl_2 + Na_2SO_4 \rightarrow 2$ $BaCl_2 + HNO_3 \rightarrow 3$ $Ba(NO_3)_2 + NaCl \rightarrow$									
A4	Выберите превращение, соответствующее сокращенному	1								
	ионному уравнению:									
	$2H^{+} + SiO_{3}^{2} \longrightarrow H_{2}SiO_{3} \downarrow \dots$									
	1) $CaSiO_3 + HCl \rightarrow 2$) $Na_2SiO_3 + H_2SO_4 \rightarrow 3$) $BaSiO_3 + HNO_3 \rightarrow$									
A5	С оксидом серы (IV) взаимодействуют все вещества,	1								
	перечисленные в ряду									
	1) H ₂ O; NaOH; P ₂ O ₅ 2) H ₂ O;KOH; CaO 3) H ₂ O;HCl;CO ₂									
A6	Установите соответствие:	1								
	Химический элемент Электронное семейство									
	1. Li a $-f$									
	2. N $6-d$									
	3. Ag B - p									
	3. La $\Gamma - S$									
	1) 1г, 2б, 3a, 4в; 3) 1б, 2в, 3г, 4a;									
	2) 1Γ, 2Β, 36, 4a; 4) 16, 2a, 3B, 4Γ									
A7	Какое вещество выделяется на катоде при электролизе	1								
	раствора CuCl ₂ ?									
	1) Cu 2) Cl ₂ 3)H ₂ 4) O ₂									
A8	Число σ - связей в молекуле пропена	1								
	1) 2 2) 3 3) 8 4) 9 Иону Na ⁺ соответствует электронная формула									
A9	Иону Na ⁺ соответствует электронная формула	1								
	1) $1s^22s^22p^63s^1$ 3) $1s^22s^22p^6$ 2) $1s^22s^22p^63s^2$ 4) $1s^22s^22p^5$									
	2) $1s^22s^22p^63s^2$ 4) $1s^22s^22p^3$									
A10	Из приведенных ниже реакций, протекающих в водной среде,	1								
	неосуществимой является									
	1) $Zn + CuCl_2 \rightarrow$ 3) $Fe + Pb(NO_3)_2 \rightarrow$									
	2) $Ag + ZnCl_2 \rightarrow$ 4) $Mg + Al_2(SO_4)_3 \rightarrow$									
A11	Гомологом гексана является вещество	1								
	1) C_5H_{12} 2) C_6H_{12} 3) C_7H_{12} 4) C_7H_{14}									
A12	Продуктом реакции $C_6H_5 - CH_3 + HNO_{3 (избыток)} \rightarrow$									
	является вещество									
	$CH_2 - NO_2$ CH_3									

	1) O	1
A13	При взаимодействии 200 г карбоната магния, содержащего	1
	16% примесей, с соляной кислотой образуется углекислый газ	
	объемом литров.	
	1) 22, 4 2) 44, 8 3) 53, 3	
A14	Одновременно в водном растворе не могут существовать	1
	вещества	
	1)Mg(NO ₃) ₂ и Na ₂ SO ₄ 3) KCl и AgNO ₃	
	2) Ba(OH) ₂ и NaCl 4) ZnCl ₂ и K ₂ SO ₄	
A15	При нагревании концентрированной азотной кислоты с медью	1
	выделяется газ	
	1) NO_2 2) H_2 3) NO 4) O_2	
A16	В водном растворе какого вещества лакмус изменяет цвет на	1
	красный?	
	1) KOH 2) HCl 3) Na ₂ SO ₄	

	Часть В	
При	выполнении части В запишите краткий ответ.	
No	Содержание задания	Кол-во
		балов
B1	Определите формулу алкина, если плотность его по водороду	4
	27. (Запишите цифрами последовательно число атомов	
	углерода и водорода в формуле.)	
B2	Запишите пропущенное слово.	1
	Высший оксид элемента, атому которого соответствует	
	электронная формула $1s^2 2s^2 2p^6 3s^2$ проявляет	
	свойства.	
B3	Укажите коэффициент перед формулой окислителя в	4
	уравнении реакции	
	$Zn+ H_2SO_{4(KOHII)} \rightarrow H_2S+$	
B4	Сумма всех коэффициентов в молекулярном, полном и	3
	кратких ионных уравнениях реакции между нитратом серебра	
	и фосфата натрия равна	
B5	Как изменяется сила оснований в ряду	1

		1
	$Ba(OH)_2 \rightarrow Ca(OH)_2 \rightarrow Mg(OH)_2$?	
B6	Запишите пропущенное слово.	1
	Химическое равновесие процесса	
	$2\text{CO} + \text{O}_2 2 \text{CO}_2 + \text{Q}$ можно сместить в сторону продукта	
	реакции при температуры.	
B7	Веществом X_4 в предложенной схеме является	4
	$(3anuшите название вещества). + O_2 + H_2O + KOH + CaCl_2$	
	$P \rightarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \downarrow$	
	Избыток	
B8	Реакцию гидрирования отражает схема	1
	Запишите номер реакции	
	1. $nCH_2 = CH_2 \rightarrow (-CH_2 - CH_2 -)_n$ $Al_2O_3t^0$	
	2. $CH_3 - CH_2 - CH_2 - CH_3 \rightarrow CH_2 = CH - CH_2 - CH_3 + H_2$	
	$3. C_2H_5OH \rightarrow C_2H_4 + H_2O$	
	4. CH_3 - CH = CH_2 + H_2 \rightarrow CH_3 - CH_2 - CH_3	
B9	Массовая доля углерода в его оксиде составляет 42, 86%.	2
	Степень окисления (без знака) углерода в соединении равна	
B10	Через 50 г. 10% раствора хлорида меди (II) пропустили 280 мл	
	сероводорода (н.у.). Масса полученного осадка составила	
	г. (Выразите в виде целого числа)	
	Итого:	37

Критерии оценивания

28 - 37 баллов – «отлично»;

19 – 27 баллов – «хорошо»;

С 18 баллов – «удовлетворительно»;

Меньше 17 баллов – «неудовлетоврительно».

Оформление ответов

Вариант 2

Часть А

$N_{\underline{0}}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
заданий																
Ответ																

Часть В